About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 808157, 14 pages
http://dx.doi.org/10.1155/2012/808157
Review Article

Shining a Light on Intestinal Traffic

Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland

Received 30 June 2011; Accepted 7 September 2011

Academic Editor: Donna-Marie McCafferty

Copyright © 2012 Carola T. Murphy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. Y. Naito, T. Takagi, and T. Yoshikawa, “Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease,” Journal of Gastroenterology, vol. 42, no. 10, pp. 787–798, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. W. Strober and I. J. Fuss, “Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases,” Gastroenterology, vol. 140, no. 6, pp. 1756–1767, 2011. View at Publisher · View at Google Scholar · View at PubMed
  4. S. Melgar and F. Shanahan, “Inflammatory bowel disease-from mechanisms to treatment strategies,” Autoimmunity, vol. 43, no. 7, pp. 463–477, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. H. Cho and S. R. Brant, “Recent insights into the genetics of inflammatory bowel disease,” Gastroenterology, vol. 140, no. 6, pp. 1704–1712, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. S. R. Targan, “Current limitations of IBD treatment: where do we go from here?” Annals of the New York Academy of Sciences, vol. 1072, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. Rutgeerts, S. Vermeire, and G. Van Assche, “Biological therapies for inflammatory bowel diseases,” Gastroenterology, vol. 136, no. 4, pp. 1182–1197, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. J. Waldner and M. F. Neurath, “Novel cytokine-targeted therapies and intestinal inflammation,” Current Opinion in Pharmacology, vol. 9, no. 6, pp. 702–707, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. L. Gowans and E. J. Knight, “The route of re-circulation of lymphocytes in the rat,” Proceedings of the Royal Society of London Series B, vol. 159, pp. 257–282, 1964.
  10. R. J. Bennink, M. Peeters, P. Rutgeerts, and L. Mortelmans, “Evaluation of early treatment response and predicting the need for colectomy in active ulcerative colitis with 99mTc-HMPAO white blood cell scintigraphy,” Journal of Nuclear Medicine, vol. 45, no. 10, pp. 1698–1704, 2004. View at Scopus
  11. C. R. Parish, “Fluorescent dyes for lymphocyte migration and proliferation studies,” Immunology and Cell Biology, vol. 77, no. 6, pp. 499–508, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. C. M. Witt and K. Robbins, “Tracking thymocyte migration in situ,” Seminars in Immunology, vol. 17, no. 6, pp. 421–430, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. J. Miller, S. H. Wei, M. D. Cahalan, and I. Parker, “Autonomous T-cell trafficking examined in vivo with intravital two-photon microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2604–2609, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. A. Mankoff, “A definition of molecular imaging,” Journal of Nuclear Medicine, vol. 48, no. 6, pp. 18–21, 2007. View at Scopus
  15. H. R. Herschman, “Micro-PET imaging and small animal models of disease,” Current Opinion in Immunology, vol. 15, no. 4, pp. 378–384, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Nuyts, K. Vunckx, M. Defrise, and C. Vanhove, “Small animal imaging with multi-pinhole SPECT,” Methods, vol. 48, no. 2, pp. 83–91, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. J. Bennink, J. Hamann, K. De Bruin, F. J. W. Ten Kate, S. J. H. Van Deventer, and A. A. Te Velde, “Dedicated pinhole SPECT of intestinal neutrophil recruitment in a mouse model of dextran sulfate sodium-induced colitis,” Journal of Nuclear Medicine, vol. 46, no. 3, pp. 526–531, 2005. View at Scopus
  18. M. F. Kircher, J. R. Allport, E. E. Graves et al., “In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors,” Cancer Research, vol. 63, no. 20, pp. 6838–6846, 2003. View at Scopus
  19. O. R. Millington, B. H. Zinselmeyer, J. M. Brewer, P. Garside, and C. M. Rush, “Lymphocyte tracking and interactions in secondary lymphoid organs,” Inflammation Research, vol. 56, no. 10, pp. 391–401, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. T. Troy, D. Jekic-McMullen, L. Sambucetti, and B. Rice, “Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models,” Molecular Imaging, vol. 3, no. 1, pp. 9–23, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. T. Murphy, G. Moloney, L. J. Hall et al., “Use of bioluminescence imaging to track neutrophil migration and its inhibition in experimental colitis,” Clinical and Experimental Immunology, vol. 162, no. 1, pp. 188–196, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. C. T. Murphy, G. Moloney, J. MacSharry et al., “Technical Advance: function and efficacy of an α4-integrin antagonist using bioluminescence imaging to detect leukocyte trafficking in murine experimental colitis,” Journal of Leukocyte Biology, vol. 88, no. 6, pp. 1271–1278, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. T. Sadikot and T. S. Blackwell, “Bioluminescence imaging,” Proceedings of the American Thoracic Society, vol. 2, no. 6, pp. 537–540, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Y. Sheikh, S. A. Lin, F. Cao et al., “Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium,” Stem Cells, vol. 25, no. 10, pp. 2677–2684, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. G. L. Costa, M. R. Sandora, N. Nakajima et al., “Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit,” Journal of Immunology, vol. 167, no. 4, pp. 2379–2387, 2001. View at Scopus
  26. K. Ley, C. Laudanna, M. I. Cybulsky, and S. Nourshargh, “Getting to the site of inflammation: the leukocyte adhesion cascade updated,” Nature Reviews Immunology, vol. 7, no. 9, pp. 678–689, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Ley and G. S. Kansas, “Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation,” Nature Reviews Immunology, vol. 4, no. 5, pp. 325–335, 2004. View at Scopus
  28. M. Sperandio, “Selectins and glycosyltransferases in leukocyte rolling in vivo,” FEBS Journal, vol. 273, no. 19, pp. 4377–4389, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. B. Rossi and G. Constantin, “Anti-selectin therapy for the treatment of inflammatory diseases,” Inflammation and Allergy Drug Targets, vol. 7, no. 2, pp. 85–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Jalkanen, “Lymphocyte traffic to mucosa-associated lymphatic tissues,” Immunologic Research, vol. 10, no. 3-4, pp. 268–270, 1991. View at Scopus
  31. N. F. Pierce and W. C. Cray, “Determinants of the localization, magnitude, and duration of a specific mucosal IgA plasma cell response in enterically immunized rats,” Journal of Immunology, vol. 128, no. 3, pp. 1311–1315, 1982. View at Scopus
  32. B. Xu, N. Wagner, L. N. Pham et al., “Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, α4β1 integrin/VCAM-1, and LFA-1 adhesion pathways,” Journal of Experimental Medicine, vol. 197, no. 10, pp. 1255–1267, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. E. C. Butcher, M. Williams, K. Youngman, L. Rott, and M. Briskin, “Lymphocyte trafficking and regional immunity,” Advances in Immunology, no. 72, pp. 209–253, 1999. View at Scopus
  34. S. M. Kerfoot and P. Kubes, “Overlapping roles of P-selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 169, no. 2, pp. 1000–1006, 2002. View at Scopus
  35. N. Wagner, J. Lohler, E. J. Kunkel et al., “Critical role for β7 integrins in formation of the gut-associated lymphoid tissue,” Nature, vol. 382, no. 6589, pp. 366–370, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. B. C. Chesnutt, D. F. Smith, N. A. Raffler, M. L. Smith, E. J. White, and K. Ley, “Induction of LFA-1-dependent neutrophil rolling on ICAM-1 by engagement of E-selectin,” Microcirculation, vol. 13, no. 2, pp. 99–109, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. R. Mora, “Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids,” Inflammatory Bowel Diseases, vol. 14, no. 2, pp. 275–289, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. I. Koboziev, F. Karlsson, and M. B. Grisham, “Gut-associated lymphoid tissue, T-cell trafficking, and chronic intestinal inflammation,” Annals of the New York Academy of Sciences, vol. 1207, pp. E86–93, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. W. Strober, I. Fuss, and P. Mannon, “The fundamental basis of inflammatory bowel disease,” Journal of Clinical Investigation, vol. 117, no. 3, pp. 514–521, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Kawachi, S. Jennings, J. Panes et al., “Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice,” American Journal of Physiology, vol. 278, no. 5, pp. G734–G743, 2000. View at Scopus
  41. J. Rivera-Nieves, T. Olson, G. Bamias et al., “L-selectin, α4β1, and α 4β7 integrins participate in CD4+ T-cell recruitment to chronically inflamed small intestine,” Journal of Immunology, vol. 174, no. 4, pp. 2343–2352, 2005. View at Scopus
  42. H. S. Souza, C. C. S. Elia, J. Spencer, and T. T. MacDonald, “Expression of lymphocyte-endothelial receptor-ligand pairs, α4β7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease,” Gut, vol. 45, no. 6, pp. 856–863, 1999. View at Scopus
  43. S. Arihiro, H. Ohtani, M. Suzuki et al., “Differential expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in ulcerative colitis and Crohn's disease,” Pathology International, vol. 52, no. 5-6, pp. 367–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Briskin, D. Winsor-Hines, A. Shyjan et al., “Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue,” American Journal of Pathology, vol. 151, no. 1, pp. 97–110, 1997. View at Scopus
  45. M. Abdelbaqi, J. H. Chidlow, K. M. Matthews et al., “Regulation of dextran sodium sulfate induced colitis by leukocyte beta 2 integrins,” Laboratory Investigation, vol. 86, no. 4, pp. 380–390, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. K. P. Pavlick, D. V. Ostanin, K. L. Furr et al., “Role of T-cell-associated lymphocyte function-associated antigen-1 in the pathogenesis of experimental colitis,” International Immunology, vol. 18, no. 2, pp. 389–398, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. J. Rivera-Nieves, G. Gorfu, and K. Ley, “Leukocyte adhesion molecules in animal models of inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 14, no. 12, pp. 1715–1735, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. D. L. Simmons, “Anti-adhesion therapies,” Current Opinion in Pharmacology, vol. 5, no. 4, pp. 398–404, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. A. Goto, Y. Arimura, Y. Shinomura, K. Imai, and Y. Hinoda, “Antisense therapy of MAdCAM-1 for trinitrobenzenesulfonic acid-induced murine colitis,” Inflammatory Bowel Diseases, vol. 12, no. 8, pp. 758–765, 2006. View at Publisher · View at Google Scholar
  50. M. Sans, J. Panes, E. Ardite et al., “VCAM-1 and ICAM-1 mediate leukocyte-endothelial cell adhesion in rat experimental colitis,” Gastroenterology, vol. 116, no. 4, pp. 874–883, 1999.
  51. J. K. MacDonald and J. W. McDonald, “Natalizumab for induction of remission in Crohn's disease,” Cochrane Database of Systematic Reviews, no. 1, article CD006097, 2007.
  52. S. R. Targan, B. G. Feagan, R. N. Fedorak et al., “Natalizumab for the treatment of active Crohn's Disease: results of the ENCORE Trial,” Gastroenterology, vol. 132, no. 5, pp. 1672–1683, 2007. View at Publisher · View at Google Scholar · View at PubMed
  53. F. H. Gordon, M. I. Hamilton, S. Donoghue et al., “A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin,” Alimentary Pharmacology and Therapeutics, vol. 16, no. 4, pp. 699–705, 2002. View at Publisher · View at Google Scholar
  54. S. Farkas, M. Hornung, C. Sattler et al., “Blocking MAdCAM-1 in vivo reduces leukocyte extravasation and reverses chronic inflammation in experimental colitis,” International Journal of Colorectal Disease, vol. 21, no. 1, pp. 71–78, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. S. Kato, R. Hokari, K. Matsuzaki et al., “Amelioration of murine experimental colitis by inhibition of mucosal addressin cell adhesion molecule-1,” Journal of Pharmacology and Experimental Therapeutics, vol. 295, no. 1, pp. 183–189, 2000.
  56. M. Takazoe, M. Watanabe, T. Kawaguchi, et al., “S1066 Oral Alpha-4 Integrin Inhibitor (AJM300) in patients with active Crohn's disease—a Randomized, Double-Blind, Placebo-Controlled Trial,” Gastroenterology, vol. 136, p. A-181, 2009.
  57. D. Picarella, P. Hurlbut, J. Rottman, X. Shi, E. Butcher, and D. J. Ringler, “Monoclonal antibodies specific for β7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid Mice reconstituted with CD45RBhigh CD4+ T cells,” Journal of Immunology, vol. 158, no. 5, pp. 2099–2106, 1997.
  58. B. G. Feagan, G. R. Greenberg, G. Wild et al., “Treatment of ulcerative colitis with a humanized antibody to the α4β7 integrin,” The New England Journal of Medicine, vol. 352, no. 24, pp. 2499–2507, 2005. View at Publisher · View at Google Scholar · View at PubMed
  59. B. W. Behm and S. J. Bickston, “Humanized antibody to the alpha4beta7 integrin for induction of remission in ulcerative colitis,” Cochrane Database of Systematic Reviews, no. 1, article CD007571, 2009.
  60. B. G. Feagan, G. R. Greenberg, G. Wild et al., “Treatment of active Crohn's disease With MLN0002, a humanized antibody to the α4β7 integrin,” Clinical Gastroenterology and Hepatology, vol. 6, no. 12, pp. 1370–1377, 2008. View at Publisher · View at Google Scholar · View at PubMed
  61. K. Matsuzaki, Y. Tsuzuki, H. Matsunaga et al., “In vivo demonstration of T lymphocyte migration and amelioration of ileitis in intestinal mucosa of SAMP1/Yit mice by the inhibition of MAdCAM-1,” Clinical and Experimental Immunology, vol. 140, no. 1, pp. 22–31, 2005. View at Publisher · View at Google Scholar · View at PubMed
  62. D. K. Podolsky, R. Lobb, N. King et al., “Attenuation of colitis in the cotton-top tamarin by anti-α4 integrin monoclonal antibody,” Journal of Clinical Investigation, vol. 92, no. 1, pp. 372–380, 1993.
  63. T. Taniguchi, H. Tsukada, H. Nakamura et al., “Effects of the anti-ICAM-1 monoclonal antibody on dextran sodium sulphate-induced colitis in rats,” Journal of Gastroenterology and Hepatology, vol. 13, no. 9, pp. 945–949, 1998.
  64. C. F. Bennett, D. Kornbrust, S. Henry et al., “An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 280, no. 2, pp. 988–1000, 1997.
  65. S. J. Van Deventer, M. K. Wedel, B. F. Baker, S. Xia, E. Chuang, and P. B. Miner Jr., “A Phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 10, pp. 1415–1425, 2006. View at Publisher · View at Google Scholar · View at PubMed
  66. S. J. H. Van Deventer, J. A. Tami, and M. K. Wedel, “A randomised, controlled, double blind, escalating dose study of alicaforsen enema in active ulcerative colitis,” Gut, vol. 53, no. 11, pp. 1646–1651, 2004. View at Publisher · View at Google Scholar · View at PubMed
  67. R. C. Burns, J. Rivera-Nieves, C. A. Moskaluk, S. Matsumoto, F. Cominelli, and K. Ley, “Antibody blockade of ICAM-1 and VCAM-1 ameliorates inflammation in the SAMP-1/Yit adoptive transfer model of Crohn's disease in mice,” Gastroenterology, vol. 121, no. 6, pp. 1428–1436, 2001.
  68. J. Rivera-Nieves, J. Ho, G. Bamias et al., “Antibody Blockade of CCL25/CCR9 Ameliorates Early but not Late Chronic Murine Ileitis,” Gastroenterology, vol. 131, no. 5, pp. 1518–1529, 2006. View at Publisher · View at Google Scholar · View at PubMed
  69. M. J. Walters, Y. Wang, N. Lai et al., “Characterization of CCX282-B, an orally bioavailable antagonist of the CCR9 chemokine receptor, for treatment of inflammatory bowel disease,” Journal of Pharmacology and Experimental Therapeutics, vol. 335, no. 1, pp. 61–69, 2010. View at Publisher · View at Google Scholar · View at PubMed
  70. B. Eksteen and D. H. Adams, “GSK-1605786, a selective small-molecule antagonist of the CCR9 chemokine receptor for the treatment of Crohn's disease,” IDrugs, vol. 13, no. 7, pp. 472–481, 2010.
  71. J. G. Hyun, G. Lee, J. B. Brown et al., “Anti-interferon-inducible chemokine, CXCL10, reduces colitis by impairing T helper-1 induction and recruitment in mice,” Inflammatory Bowel Diseases, vol. 11, no. 9, pp. 799–805, 2005. View at Publisher · View at Google Scholar
  72. U. P. Singh, S. Singh, D. D. Taub, and J. W. Lillard, “Inhibition of IFN-γ-inducible protein-10 abrogates colitis in IL-10-/- mice,” Journal of Immunology, vol. 171, no. 3, pp. 1401–1406, 2003.
  73. S. Sasaki, H. Yoneyama, K. Suzuki et al., “Blockade of CXCL 10 protects mice from acute colitis and enhances crypt cell survival,” European Journal of Immunology, vol. 32, no. 11, pp. 3197–3205, 2002. View at Publisher · View at Google Scholar
  74. W. Zhong, J. K. Kolls, H. Chen, F. McAllister, P. D. Oliver, and Z. Zhang, “Chemokines orchestrate leukocyte trafficking in inflammatory bowel disease,” Frontiers in Bioscience, vol. 13, no. 5, pp. 1654–1664, 2008. View at Publisher · View at Google Scholar
  75. R. Förster, A. Schubel, D. Breitfeld et al., “CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs,” Cell, vol. 99, no. 1, pp. 23–33, 1999. View at Publisher · View at Google Scholar
  76. S. K. Bromley, S. Y. Thomas, and A. D. Luster, “Chemokine receptor CCR7 guides T-cell exit from peripheral tissues and entry into afferent lymphatics,” Nature Immunology, vol. 6, no. 9, pp. 895–901, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. A. Viola and A. D. Luster, “Chemokines and their receptors: drug targets in immunity and inflammation,” Annual Review of Pharmacology and Toxicology, vol. 48, pp. 171–197, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. C. Banks, A. Bateman, R. Payne, P. Johnson, and N. Sheron, “Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease,” Journal of Pathology, vol. 199, no. 1, pp. 28–35, 2003. View at Publisher · View at Google Scholar · View at PubMed
  79. J. Puleston, M. Cooper, S. Murch et al., “A distinct subset of chemokines dominates the mucosal chemokine response in inflammatory bowel disease,” Alimentary Pharmacology and Therapeutics, vol. 21, no. 2, pp. 109–120, 2005. View at Publisher · View at Google Scholar · View at PubMed
  80. D. Kawashima, N. Oshitani, Y. Jinno et al., “Augmented expression of secondary lymphoid tissue chemokine and EBI1 ligand chemokine in Crohn's disease,” Journal of Clinical Pathology, vol. 58, no. 10, pp. 1057–1063, 2005. View at Publisher · View at Google Scholar · View at PubMed
  81. J. R. Mora, M. R. Bono, N. Manjunath et al., “Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells,” Nature, vol. 424, no. 6944, pp. 88–93, 2003. View at Publisher · View at Google Scholar · View at PubMed
  82. A. J. Stagg, M. A. Kamm, and S. C. Knight, “Intestinal dendritic cells increase T-cell expression of α4β7 integrin,” European Journal of Immunology, vol. 32, no. 5, pp. 1445–1454, 2002. View at Publisher · View at Google Scholar
  83. B. Johansson-Lindbom, M. Svensson, M. A. Wurbel, B. Malissen, G. Márquez, and W. Agace, “Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant,” Journal of Experimental Medicine, vol. 198, no. 6, pp. 963–969, 2003. View at Publisher · View at Google Scholar · View at PubMed
  84. J. R. Mora, G. Cheng, D. Picarella, M. Briskin, N. Buchanan, and U. H. Von Andrian, “Reciprocal and dynamic control of CD8 T-cell homing by dendritic cells from skin- and gut-associated lymphoid tissues,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 303–316, 2005. View at Publisher · View at Google Scholar · View at PubMed
  85. B. Johansson-Lindbom, M. Svensson, O. Pabst et al., “Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T-cell homing,” Journal of Experimental Medicine, vol. 202, no. 8, pp. 1063–1073, 2005. View at Publisher · View at Google Scholar · View at PubMed
  86. E. Jaensson, H. Uronen-Hansson, O. Pabst et al., “Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 2139–2149, 2008. View at Publisher · View at Google Scholar · View at PubMed
  87. M. Iwata, A. Hirakiyama, Y. Eshima, H. Kagechika, C. Kato, and S. Y. Song, “Retinoic acid imprints gut-homing specificity on T cells,” Immunity, vol. 21, no. 4, pp. 527–538, 2004. View at Publisher · View at Google Scholar · View at PubMed
  88. S. Manicassamy and B. Pulendran, “Retinoic acid-dependent regulation of immune responses by dendritic cells and macrophages,” Seminars in Immunology, vol. 21, no. 1, pp. 22–27, 2009. View at Publisher · View at Google Scholar · View at PubMed
  89. M. Svensson, B. Johansson-Lindbom, F. Zapata et al., “Retinoic acid receptor signaling levels and antigen dose regulate gut homing receptor expression on CD8+ T cells,” Mucosal Immunology, vol. 1, no. 1, pp. 38–48, 2008. View at Publisher · View at Google Scholar · View at PubMed
  90. A. J. Stagg, K. E. Norin, T. Midtvedt, M. A. Kamm, S. C. Knight, and B. Björkstén, “Mesenteric dendritic cells from germ-free mice cause less T-cell stimulation but still induce α4β7 integrin,” Microbial Ecology in Health and Disease, vol. 19, no. 3, pp. 171–183, 2007. View at Publisher · View at Google Scholar
  91. S. C. Ng, M. A. Kamm, A. J. Stagg, and S. C. Knight, “Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation,” Inflammatory Bowel Diseases, vol. 16, no. 10, pp. 1787–1807, 2010. View at Publisher · View at Google Scholar · View at PubMed
  92. J. L. Coombes, K. R. R. Siddiqui, C. V. Arancibia-Cárcamo et al., “A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β -and retinoic acid-dependent mechanism,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1757–1764, 2007. View at Publisher · View at Google Scholar · View at PubMed
  93. S. G. Kang, C. Wang, S. Matsumoto, and C. H. Kim, “High and low vitamin A therapies induce distinct foxP3+ T-cell subsets and effectively control intestinal inflammation,” Gastroenterology, vol. 137, no. 4, pp. 1391–e6, 2009. View at Publisher · View at Google Scholar · View at PubMed
  94. H. Chi, “Sphingosine-1-phosphate and immune regulation: trafficking and beyond,” Trends in Pharmacological Sciences, vol. 32, no. 1, pp. 16–24, 2011. View at Publisher · View at Google Scholar · View at PubMed
  95. D. Meyer zu Heringdorf and K. H. Jakobs, “Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism,” Biochimica et Biophysica Acta, vol. 1768, no. 4, pp. 923–940, 2007. View at Publisher · View at Google Scholar · View at PubMed
  96. S. S. Chae, R. L. Proia, and T. Hla, “Constitutive expression of the S1P1 receptor in adult tissues,” Prostaglandins and Other Lipid Mediators, vol. 73, no. 1-2, pp. 141–150, 2004. View at Publisher · View at Google Scholar
  97. M. Graeler and E. J. Goetzl, “Activation-regulated expression and chemotactic function of sphingosine 1-phosphate receptors in mouse splenic T cells,” FASEB Journal, vol. 16, no. 14, pp. 1874–1878, 2002. View at Publisher · View at Google Scholar · View at PubMed
  98. C. Jaillard, S. Harrison, B. Stankoff et al., “Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival,” Journal of Neuroscience, vol. 25, no. 6, pp. 1459–1469, 2005. View at Publisher · View at Google Scholar · View at PubMed
  99. M. Matloubian, C. G. Lo, G. Cinamon et al., “Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1,” Nature, vol. 427, no. 6972, pp. 355–360, 2004. View at Publisher · View at Google Scholar · View at PubMed
  100. L. R. Shiow, D. B. Rosen, N. Brdičková et al., “CD69 acts downstream of interferon-α/β to inhibit S1P 1 and lymphocyte egress from lymphoid organs,” Nature, vol. 440, no. 7083, pp. 540–544, 2006. View at Publisher · View at Google Scholar · View at PubMed
  101. T. H. M. Pham, T. Okada, M. Matloubian, C. G. Lo, and J. G. Cyster, “S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T-cell egress,” Immunity, vol. 28, no. 1, pp. 122–133, 2008. View at Publisher · View at Google Scholar · View at PubMed
  102. A. Rathinasamy, N. Czeloth, O. Pabst, R. Förster, and G. Bernhardt, “The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration,” Journal of Immunology, vol. 185, no. 7, pp. 4072–4081, 2010. View at Publisher · View at Google Scholar · View at PubMed
  103. M. L. Allende, M. Bektas, B. G. Lee et al., “Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking,” Journal of Biological Chemistry, vol. 286, no. 9, pp. 7348–7358, 2011. View at Publisher · View at Google Scholar · View at PubMed
  104. T. Walzer, L. Chiossone, J. Chaix et al., “Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor,” Nature Immunology, vol. 8, no. 12, pp. 1337–1344, 2007. View at Publisher · View at Google Scholar · View at PubMed
  105. S. Spiege and S. Milstien, “The outs and the ins of sphingosine-1-phosphate in immunity,” Nature Reviews Immunology, vol. 11, pp. 403–415, 2011.
  106. A. J. Ammit, A. T. Hastie, L. C. Edsall et al., “Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma,” The FASEB Journal, vol. 15, no. 7, pp. 1212–1214, 2001.
  107. M. Kitano, T. Hla, M. Sekiguchi et al., “Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression,” Arthritis and Rheumatism, vol. 54, no. 3, pp. 742–753, 2006. View at Publisher · View at Google Scholar · View at PubMed
  108. V. Brinkmann, A. Billich, T. Baumruker et al., “Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis,” Nature Reviews Drug Discovery, vol. 9, no. 11, pp. 883–897, 2010. View at Publisher · View at Google Scholar · View at PubMed
  109. K. Chiba, “A new therapeutic approach for autoimmune diseases by the sphingosine 1-phosphate receptor modulator, fingolimod (FTY720),” Yakugaku Zasshi, vol. 129, no. 6, pp. 655–665, 2009. View at Publisher · View at Google Scholar
  110. Y. Y. Lan, A. De Creus, B. L. Colvin et al., “The sphingosine-1-phosphate receptor agonist FTY720 modulates dendritic cell trafficking in vivo,” American Journal of Transplantation, vol. 5, no. 11, pp. 2649–2659, 2005. View at Publisher · View at Google Scholar · View at PubMed
  111. K. Budde, R. L. Schmouder, B. Nashan et al., “Pharmacodynamics of single doses of the novel immunosuppressant FTY720 in stable renal transplant patients,” American Journal of Transplantation, vol. 3, no. 7, pp. 846–854, 2003. View at Publisher · View at Google Scholar
  112. K. Budde, R. L. Schmouder, R. Brunkhorst et al., “First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients,” Journal of the American Society of Nephrology, vol. 13, no. 4, pp. 1073–1083, 2002.
  113. B. D. Kahan, J. L. Karlix, R. M. Ferguson et al., “Pharmacodynamics, pharmacokinetics, and safety of multiple doses of FTY720 in stable renal transplant patients: a multicenter, randomized, placebo-controlled, phase I study,” Transplantation, vol. 76, no. 7, pp. 1079–1084, 2003. View at Publisher · View at Google Scholar · View at PubMed
  114. H. Tedesco-Silva, G. Mourad, B. D. Kahan et al., “FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation,” Transplantation, vol. 79, no. 11, pp. 1553–1560, 2005. View at Publisher · View at Google Scholar
  115. C. Daniel, N. Sartory, N. Zahn, G. Geisslinger, H. H. Radeke, and J. M. Stein, “FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells,” Journal of Immunology, vol. 178, no. 4, pp. 2458–2468, 2007.
  116. Y. Deguchi, A. Andoh, Y. Yagi et al., “The S1P receptor modulator FTY720 prevents the development of experimental colitis in mice,” Oncology Reports, vol. 16, no. 4, pp. 699–703, 2006.
  117. C. Daniel, N. A. Sartory, N. Zahn et al., “FTY720 ameliorates oxazolone colitis in mice by directly affecting T helper type 2 functions,” Molecular Immunology, vol. 44, no. 13, pp. 3305–3316, 2007. View at Publisher · View at Google Scholar · View at PubMed
  118. R. Fujii, T. Kanai, Y. Nemoto et al., “FTY720 suppresses CD4+CD44highCD62L- effector memory T-cell-mediated colitis,” American Journal of Physiology, vol. 291, no. 2, pp. G267–G274, 2006. View at Publisher · View at Google Scholar · View at PubMed
  119. T. Mizushima, T. Ito, D. Kishi et al., “Therapeutic effects of a new lymphocyte homing reagent FTY720 in interleukin-10 gene-deficient mice with colitis,” Inflammatory Bowel Diseases, vol. 10, no. 3, pp. 182–192, 2004. View at Publisher · View at Google Scholar
  120. A. S. Awad, H. Ye, L. Huang et al., “Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney,” American Journal of Physiology, vol. 290, no. 6, pp. F1516–F1524, 2006. View at Publisher · View at Google Scholar · View at PubMed
  121. D. T. Bolick, S. Srinivasan, K. W. Kim et al., “Sphingosine-1-phosphate prevents tumor necrosis factor-α-mediated monocyte adhesion to aortic endothelium in mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 5, pp. 976–981, 2005. View at Publisher · View at Google Scholar · View at PubMed
  122. J. Song, C. Matsuda, Y. Kai et al., “A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 324, no. 1, pp. 276–283, 2008. View at Publisher · View at Google Scholar · View at PubMed
  123. D. H. Miller, O. A. Khan, W. A. Sheremata et al., “A controlled trial of natalizumab for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 348, no. 1, pp. 15–23, 2003. View at Publisher · View at Google Scholar · View at PubMed
  124. R. A. Rudick, W. H. Stuart, P. A. Calabresi et al., “Natalizumab plus interferon beta-1a for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 354, no. 9, pp. 911–923, 2006. View at Publisher · View at Google Scholar · View at PubMed
  125. O. Stuve, R. Gold, A. Chan, E. Mix, U. Zettl, and B. C. Kieseier, “α4-Integrin antagonism with natalizumab : effects and adverse effects,” Journal of Neurology, vol. 255, supplement 6, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at PubMed
  126. P. E. Hesterberg, D. Winsor-Hines, M. J. Briskin et al., “Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin α4β7,” Gastroenterology, vol. 111, no. 5, pp. 1373–1380, 1996. View at Publisher · View at Google Scholar
  127. C. F. Barish, “Alicaforsen therapy in inflammatory bowel disease,” Expert Opinion on Biological Therapy, vol. 5, no. 10, pp. 1387–1391, 2005. View at Publisher · View at Google Scholar · View at PubMed
  128. B. Yacyshyn, W. Y. Chey, M. K. Wedel, R. Z. Yu, D. Paul, and E. Chuang, “A randomized, double-masked, placebo-controlled study of alicaforsen, an antisense inhibitor of intercellular adhesion molecule 1, for the treatment of subjects with active Crohn's disease,” Clinical Gastroenterology and Hepatology, vol. 5, no. 2, pp. 215–220, 2007. View at Publisher · View at Google Scholar · View at PubMed
  129. B. R. Yacyshyn, W. Y. Chey, J. Goff et al., “Double blind, placebo controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn's disease,” Gut, vol. 51, no. 1, pp. 30–36, 2002. View at Publisher · View at Google Scholar
  130. S. Schreiber, S. Nikolaus, H. Malchow et al., “Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn's disease,” Gastroenterology, vol. 120, no. 6, pp. 1339–1346, 2001.
  131. P. Miner Jr., M. Wedel, B. Bane, and J. Bradley, “An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremitting pouchitis,” Alimentary Pharmacology and Therapeutics, vol. 19, no. 3, pp. 281–286, 2004. View at Publisher · View at Google Scholar
  132. S. Bommakanti, A. Patil, C. Eshoa, and C. R. Chitambar, “Case reports: efalizumab-associated lymphoproliferative disease,” Journal of Drugs in Dermatology, vol. 6, no. 6, pp. 646–648, 2007.
  133. H. Okigami, K. Takeshita, M. Tajimi et al., “Inhibition of eosinophilia in vivo by a small molecule inhibitor of very late antigen (VLA)-4,” European Journal of Pharmacology, vol. 559, no. 2-3, pp. 202–209, 2007. View at Publisher · View at Google Scholar · View at PubMed
  134. J. Cortijo, M. J. Sanz, A. Iranzo et al., “A small molecule, orally active, α4β1/ α4β7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in Brown Norway rats,” British Journal of Pharmacology, vol. 147, no. 6, pp. 661–670, 2006. View at Publisher · View at Google Scholar · View at PubMed
  135. B. Johansson-Lindbom and W. W. Agace, “Generation of gut-homing T cells and their localization to the small intestinal mucosa,” Immunological Reviews, vol. 215, no. 1, pp. 226–242, 2007. View at Publisher · View at Google Scholar · View at PubMed
  136. C. Koenecke and R. Förster, “CCR9 and inflammatory bowel disease,” Expert Opinion on Therapeutic Targets, vol. 13, no. 3, pp. 297–306, 2009. View at Publisher · View at Google Scholar · View at PubMed
  137. J. D. Wermers, E. N. McNamee, M. A. Wurbel, P. Jedlicka, and J. Rivera-Nieves, “The Chemokine receptor CCR9 is required for the T-cell-mediated regulation of chronic ileitis in mice,” Gastroenterology, vol. 140, no. 5, pp. 1526–1535.e3, 2011. View at Publisher · View at Google Scholar · View at PubMed
  138. M. A. Wurbel, M. G. McIntire, P. Dwyer, and E. Fiebiger, “CCL25/CCR9 interactions regulate large intestinal inflammation in a murine model of acute colitis,” PLoS ONE, vol. 6, no. 1, article e16442, 2011. View at Publisher · View at Google Scholar · View at PubMed
  139. E. J. Kunkel, J. J. Campbell, G. Haraldsen et al., “Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity,” Journal of Experimental Medicine, vol. 192, no. 5, pp. 761–767, 2000. View at Publisher · View at Google Scholar
  140. L. Piali, C. Weber, G. LaRosa et al., “The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig,” European Journal of Immunology, vol. 28, no. 3, pp. 961–972, 1998. View at Publisher · View at Google Scholar
  141. R. Bonecchi, G. Bianchi, P. P. Bordignon et al., “Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s,” Journal of Experimental Medicine, vol. 187, no. 1, pp. 129–134, 1998. View at Publisher · View at Google Scholar
  142. U. P. Singh, C. Venkataraman, R. Singh, and J. W. Lillard Jr., “CXCR3 axis: role in inflammatory bowel disease and its therapeutic implication,” Endocrine, Metabolic and Immune Disorders Drug Targets, vol. 7, no. 2, pp. 111–123, 2007. View at Publisher · View at Google Scholar
  143. E. Scarpini, D. Galimberti, P. Baron et al., “IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease,” Journal of the Neurological Sciences, vol. 195, no. 1, pp. 41–46, 2002.
  144. R. Hanaoka, T. Kasama, M. Muramatsu et al., “A novel mechanism for the regulation of IFN-gamma inducible protein-10 expression in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 5, no. 2, pp. R74–81, 2003.
  145. A. Aggarwal, S. Agarwal, and R. Misra, “Chemokine and chemokine receptor analysis reveals elevated interferon-inducible protein-10 (IP)-10/CXCL10 levels and increased number of CCR5+ and CXCR3+ CD4 T cells in synovial fluid of patients with enthesitis-related arthritis (ERA),” Clinical and Experimental Immunology, vol. 148, no. 3, pp. 515–519, 2007. View at Publisher · View at Google Scholar · View at PubMed
  146. P. Loetscher, A. Pellegrino, J. H. Gong et al., “The Ligands of CXC Chemokine Receptor 3, I-TAC, Mig, and IP10, Are Natural Antagonists for CCR3,” Journal of Biological Chemistry, vol. 276, no. 5, pp. 2986–2991, 2001. View at Publisher · View at Google Scholar · View at PubMed
  147. F. R. Byrne, A. Winters, D. Brankow et al., “An antibody to IP-10 is a potent antagonist of cell migration in vitro and in vivo and does not affect disease in several animal models of inflammation,” Autoimmunity, vol. 42, no. 3, pp. 171–182, 2009. View at Publisher · View at Google Scholar · View at PubMed
  148. M. J. H. J. Palmen, C. D. Dijkstra, M. B. Van Der Ende, A. S. Pena, and E. P. Van Rees, “Anti-CD11b/CD18 antibodies reduce inflammation in acute colitis in rats,” Clinical and Experimental Immunology, vol. 101, no. 2, pp. 351–356, 1995.
  149. Y. Kobayashi, “Neutrophil infiltration and chemokines,” Critical Reviews in Immunology, vol. 26, no. 4, pp. 307–315, 2006.
  150. S. Melgar, M. Drmotova, E. Rehnström, L. Jansson, and E. Michaëlsson, “Local production of chemokines and prostaglandin E2 in the acute, chronic and recovery phase of murine experimental colitis,” Cytokine, vol. 35, no. 5-6, pp. 275–283, 2006. View at Publisher · View at Google Scholar · View at PubMed
  151. H. Hanai, K. Takeuchi, T. Iida et al., “Relationship between fecal calprotectin, intestinal inflammation, and peripheral blood neutrophils in patients with active ulcerative colitis,” Digestive Diseases and Sciences, vol. 49, no. 9, pp. 1438–1443, 2004. View at Publisher · View at Google Scholar
  152. P. L. Podolin, B. J. Bolognese, J. J. Foley et al., “A potent and selective nonpeptide antagonist of CXCR2 inhibits acute and chronic models of arthritis in the rabbit,” Journal of Immunology, vol. 169, no. 11, pp. 6435–6444, 2002.
  153. J. M. Schuh, K. Blease, and C. M. Hogaboam, “CXCR2 is necessary for the development and persistence of chronic fungal asthma in mice,” Journal of Immunology, vol. 168, no. 3, pp. 1447–1456, 2002.
  154. P. Buanne, E. Di Carlo, L. Caputi et al., “Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice,” Journal of Leukocyte Biology, vol. 82, no. 5, pp. 1239–1246, 2007. View at Publisher · View at Google Scholar · View at PubMed
  155. A. F. Bento, D. F. P. Leite, R. F. Claudino, D. B. Hara, P. C. Leal, and J. B. Calixto, “The selective nonpeptide CXCR2 antagonist SB225002 ameliorates acute experimental colitis in mice,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 1213–1221, 2008. View at Publisher · View at Google Scholar · View at PubMed
  156. T. J. Schall and A. E. Proudfoot, “Overcoming hurdles in developing successful drugs targeting chemokine receptors,” Nature Reviews Immunology, vol. 11, no. 5, pp. 355–363, 2011. View at Publisher · View at Google Scholar · View at PubMed
  157. S. Keshav, D. Johnson, P. Bekker, and T. J. Schall, “PROTECT-1 study demonstrated efficacy of the intestine-specific chemokine receptor antagonist CCX282-B (Traficet-EN) in treatment of patients with moderate-to-severe Crohn's disease,” Gastroenterology, vol. 136, p. A-65, 2009.
  158. J. Mattes, A. Collison, M. Plank, S. Phipps, and P. S. Foster, “Antagonism of microRNA-126 suppresses the effector function of T H2 cells and the development of allergic airways disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 44, pp. 18704–18709, 2009. View at Publisher · View at Google Scholar · View at PubMed
  159. Y. Suárez, C. Fernández-Hernando, J. S. Pober, and W. C. Sessa, “Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells,” Circulation Research, vol. 100, no. 8, pp. 1164–1173, 2007. View at Publisher · View at Google Scholar · View at PubMed
  160. L. Poliseno, A. Tuccoli, L. Mariani et al., “MicroRNAs modulate the angiogenic properties of HUVECs,” Blood, vol. 108, no. 9, pp. 3068–3071, 2006. View at Publisher · View at Google Scholar · View at PubMed
  161. T. A. Harris, M. Yamakuchi, M. Ferlito, J. T. Mendell, and C. J. Lowenstein, “MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1516–1521, 2008. View at Publisher · View at Google Scholar · View at PubMed
  162. Y. Suárez, C. Wang, T. D. Manes, and J. S. Pober, “Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation,” Journal of Immunology, vol. 184, no. 1, pp. 21–25, 2010. View at Publisher · View at Google Scholar · View at PubMed
  163. H. T. T. Nguyen, G. Dalmasso, Y. Yan et al., “MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation,” Journal of Biological Chemistry, vol. 285, no. 2, pp. 1479–1489, 2010. View at Publisher · View at Google Scholar · View at PubMed
  164. R. Glauben and B. Siegmund, “Inhibition of histone deacetylases in inflammatory bowel diseases,” Molecular Medicine, vol. 17, no. 5-6, pp. 426–433, 2011. View at Publisher · View at Google Scholar · View at PubMed
  165. E. Nicodeme, K. L. Jeffrey, U. Schaefer et al., “Suppression of inflammation by a synthetic histone mimic,” Nature, vol. 468, no. 7327, pp. 1119–1123, 2010. View at Publisher · View at Google Scholar · View at PubMed