About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 868251, 7 pages
http://dx.doi.org/10.1155/2012/868251
Review Article

Autoantibodies to Apolipoprotein A-1 in Cardiovascular Diseases: Current Perspectives

1Translational Research Sciences, F.n Hoffman-La Roche Ltd., 4070 Basel, Switzerland
2Department of Human Protein Science, Geneva Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
3Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospital Geneva, 1211 Geneva, Switzerland
4Laboratory Medicine Service, Department of Genetics and Laboratory Medicine, Geneva University Hospital, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva, Switzerland

Received 2 October 2012; Accepted 19 October 2012

Academic Editor: Dimitrios P. Bogdanos

Copyright © 2012 P. C. Teixeira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. R. S. Packard and P. Libby, “Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction,” Clinical Chemistry, vol. 54, no. 1, pp. 24–38, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Blasi, “The autoimmune origin of atherosclerosis,” Atherosclerosis, vol. 201, no. 17, p. 32, 2008.
  3. B. J. Skaggs, B. H. Hahn, and M. McMahon, “Accelerated atherosclerosis in patients with SLE—mechanisms and management,” Nature Reviews Rheumatology, vol. 8, no. 4, pp. 214–223, 2012. View at Publisher · View at Google Scholar
  4. C. B. Zeller and S. Appenzeller, “Cardiovascular disease in systemic lupus erythematosus: the role of traditional and lupus related risk factors,” Current Cardiology Reviews, vol. 4, no. 2, pp. 116–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Kaplan, “Cardiovascular complications of rheumatoid arthritis: assessment, prevention, and treatment,” Rheumatic Disease Clinics of North America, vol. 36, no. 2, pp. 405–426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Roux-Lombard, S. Pagano, F. Montecucco, N. Satta, and N. Vuilleumier, “Auto-antibodies as emergent prognostic markers and possible mediators of ischemic cardiovascular diseases,” Clinical Reviews in Allergy and Immunology, pp. 1–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. A. Rye, C. A. Bursill, G. Lambert, F. Tabet, and P. J. Barter, “The metabolism and anti-atherogenic properties of HDL,” Journal of lipid research, vol. 50, pp. S195–S200, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Gordon, S. Hofmann, D. S. Askew, and W. S. Davidson, “High density lipoprotein: it's not just about lipid transport anymore,” Trends in Endocrinology and Metabolism, vol. 22, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Besler, T. F. Lüscher, and U. Landmesser, “Molecular mechanisms of vascular effects of high-density lipoprotein: alterations in cardiovascular disease,” EMBO Molecular Medicine, vol. 4, no. 4, pp. 251–268, 2012. View at Publisher · View at Google Scholar
  10. A. R. Dinu, J. T. Merrill, C. Shen, I. V. Antonov, B. L. Myones, and R. G. Lahita, “Frequency of antibodies to the cholesterol transport protein apolipoprotein A1 in patients with SLE,” Lupus, vol. 7, no. 5, pp. 355–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Abe, N. Tsuboi, S. Suzuki et al., “Anti-apolipoprotein A-I autoantibody: characterization of monoclonal autoantibodies from patients with systemic lupus erythematosusr,” Journal of Rheumatology, vol. 28, no. 5, pp. 990–995, 2001. View at Scopus
  12. J. Delgado Alves, S. Kumar, and D. A. Isenberg, “Cross-reactivity between anti-cardiolipin, anti-high-density lipoprotein and anti-apolipoprotein A-I IgG antibodies in patients with systemic lupus erythematosus and primary antiphospholipid syndrome,” Rheumatology, vol. 42, no. 7, pp. 893–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Delgado Alves, P. R. J. Ames, S. Donohue et al., “Antibodies to high-density lipoprotein and β2-glycoprotein I are inversely correlated with paraoxonase activity in systemic lupus erythematosus and primary antiphospholipid syndrome,” Arthritis and Rheumatism, vol. 46, no. 10, pp. 2686–2694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Batuca, P. R. J. Ames, D. A. Isenberg, and J. Delgado Alves, “Antibodies toward high-density lipoprotein components inhibit paraoxonase activity in patients with systemic lupus erythematosus,” Annals of the New York Academy of Sciences, vol. 1108, pp. 137–146, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. P. R. J. Ames, E. Matsuura, J. R. Batuca et al., “High-density lipoprotein inversely relates to its specific autoantibody favoring oxidation in thrombotic primary antiphospholipid syndrome,” Lupus, vol. 19, no. 6, pp. 711–716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Van Lenten, S. Y. Hama, F. C. De Beer et al., “Anti-inflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures,” Journal of Clinical Investigation, vol. 96, no. 6, pp. 2758–2767, 1995. View at Scopus
  17. N. Vuilleumier, S. Bas, S. Pagano et al., “Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 62, no. 9, pp. 2640–2650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. I. M. Loftus, A. R. Naylor, S. Goodall et al., “Increased matrix metalloproteinase-9 activity in unstable carotid plaques: a potential role in acute plaque disruption,” Stroke, vol. 31, no. 1, pp. 40–47, 2000. View at Scopus
  19. M. Anselmi, U. Garbin, P. Agostoni et al., “Plasma levels of oxidized-low-density lipoproteins are higher in patients with unstable angina and correlated with angiographic coronary complex plaques,” Atherosclerosis, vol. 185, no. 1, pp. 114–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Vuilleumier, J. Bratt, R. Alizadeh, T. Jogestrand, I. Hafström, and J. Frostegård, “Anti-apoA-1 IgG and oxidized LDL are raised in rheumatoid arthritis (RA): potential associations with cardiovascular disease and RA disease activity,” Scandinavian Journal of Rheumatology, vol. 39, no. 6, pp. 447–453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Finckh, D. S. Courvoisier, S. Pagano et al., “Evaluation of cardiovascular risk in patients with rheumatoid arthritis: do cardiovascular biomarkers offer added predictive ability over established clinical risk scores ?” Arthritis Care & Research, vol. 64, no. 6, pp. 817–825, 2012. View at Publisher · View at Google Scholar
  22. N. Vuilleumier, G. Reber, R. James et al., “Presence of autoantibodies to apolipoprotein A-1 in patients with acute coronary syndrome further links autoimmunity to cardiovascular disease,” Journal of Autoimmunity, vol. 23, no. 4, pp. 353–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Urieli-Shoval, R. P. Linke, and Y. Matzner, “Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states,” Current Opinion in Hematology, vol. 7, no. 1, pp. 64–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Malle, A. Steinmetz, and J. G. Raynes, “Serum amyloid A (SAA): an acute phase protein and apolipoprotein,” Atherosclerosis, vol. 102, no. 2, pp. 131–146, 1993. View at Scopus
  25. N. Vuilleumier, E. Charbonney, L. Fontao et al., “Anti-(apolipoprotein A-I) IgGs are associated with high levels of oxidized low-density lipoprotein in acute coronary syndrome,” Clinical Science, vol. 115, no. 1-2, pp. 25–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Vuilleumier, M. F. Rossier, S. Pagano et al., “Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction,” European Heart Journal, vol. 31, no. 7, pp. 815–823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Fox, I. Ford, P. G. Steg, M. Tendera, M. Robertson, and R. Ferrari, “Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial,” The Lancet, vol. 372, no. 9641, pp. 817–821, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. W. B. Kannel, C. Kannel, R. S. Paffenbarger, and A. Cupples, “Heart rate and cardiovascular mortality: the Framingham study,” American Heart Journal, vol. 113, no. 6, pp. 1489–1494, 1987. View at Scopus
  29. A. Diaz, M. G. Bourassa, M. C. Guertin, and J. C. Tardif, “Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease,” European Heart Journal, vol. 26, no. 10, pp. 967–974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Pagano, N. Satta, D. Werling et al., “Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex,” Journal of Internal Medicine, vol. 272, no. 4, pp. 344–357, 2012.
  31. N. Vuilleumier, S. Pagano, K. Lalhou et al., “Head-to-head comparison of auto-antibodies for cardiovascular outcome prediction after myocardial infarction: a prospective study,” Journal of Clinical and Experimental Cardiology. In press. View at Publisher · View at Google Scholar
  32. T. P. Murphy, R. Dhangana, M. J. Pencina, A. M. Zafar, and R. B. D'Agostino, “Performance of current guidelines for coronary heart disease prevention: optimal use of the Framingham-based risk assessment,” Atherosclerosis, vol. 216, no. 2, pp. 452–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. P. F. Keller, S. Pagano, P. Roux-Lombard et al., “Autoantibodies against apolipoprotein A-1 and phosphorylcholine for diagnosis of non-ST-segment elevation myocardial infarction,” Journal of Internal Medicine, vol. 271, no. 5, pp. 451–462, 2012. View at Publisher · View at Google Scholar
  34. T. Reichlin, W. Hochholzer, S. Bassetti et al., “Early diagnosis of myocardial infarction with sensitive cardiac troponin assays,” New England Journal of Medicine, vol. 361, no. 9, pp. 858–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Montecucco, N. Vuilleumier, S. Pagano et al., “Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability,” European Heart Journal, vol. 32, no. 4, pp. 412–421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Schwartz, Z. S. Galis, M. E. Rosenfeld, and E. Falk, “Plaque rupture in humans and mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 4, pp. 705–713, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Libby, “Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis.,” Journal of Lipid Research, vol. 50, pp. S352–357, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Sarnak, A. S. Levey, A. C. Schoolwerth et al., “Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention,” Hypertension, vol. 42, no. 5, pp. 1050–1065, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Stenvinkel, J. J. Carrero, J. Axelsson, B. Lindholm, O. Heimbürger, and Z. Massy, “Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle?” Clinical Journal of the American Society of Nephrology, vol. 3, no. 2, pp. 505–521, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. A. B. Hauser, A. E. M. Stinghen, S. Kato et al., “Characteristics and causes of immune dysfunction related to uremia and dialysis,” Peritoneal Dialysis International, vol. 28, supplement 3, pp. S183–S187, 2008. View at Scopus
  41. J. J. Carrero, X. Hua, P. Stenvinkel et al., “Low levels of IgM antibodies against phosphorylcholine-A increase mortality risk in patients undergoing haemodialysis,” Nephrology Dialysis Transplantation, vol. 24, no. 11, pp. 3454–3460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Pawlak, D. Pawlak, and M. Mysliwiec, “Oxidative stress influences CC-chemokine levels in hemodialyzed patients,” Nephron Physiology, vol. 96, no. 4, pp. p105–p112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Pruijm, J. Schmidtko, A. Aho et al., “High prevalence of anti-Apolipoprotein A-1 autoantibodies in maintenance haemodialysis and associations with dialysis vintage,” Therapeutic Apheresis and Dialysis. In press. View at Publisher · View at Google Scholar
  44. T. Ohtake, K. Ishioka, K. Honda et al., “Impact of coronary artery calcification in hemodialysis patients: risk factors and associations with prognosis,” Hemodialysis International, vol. 14, no. 2, pp. 218–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. N. D. Vaziri, M. Navab, and A. M. Fogelman, “HDL metabolism and activity in chronic kidney disease,” Nature Reviews Nephrology, vol. 6, no. 5, pp. 287–296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Satta, S. Dunoyer-Geindre, G. Reber et al., “The role of TLR2 in the inflammatory activation of mouse fibroblasts by human antiphospholipid antibodies,” Blood, vol. 109, no. 4, pp. 1507–1514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Satta, E. K. O. Kruithof, C. Fickentscher et al., “Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies,” Blood, vol. 117, no. 20, pp. 5523–5531, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. I. Yokota, S. Minota, and N. Fujii, “Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors,” International Immunology, vol. 18, no. 4, pp. 573–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. F. Rossier, S. Pagano, M. Python et al., “Antiapolipoprotein A-1 IgG chronotropic effects require nongenomic action of aldosterone on L-type calcium channels,” General Endocrinology, vol. 153, no. 3, pp. 1269–1278, 2012. View at Publisher · View at Google Scholar
  50. R. Srivastava, S. Yu, B. W. Parks, L. L. Black, and J. H. Kabarowski, “Autoimmune-mediated reduction of high-density lipoprotein-cholesterol and paraoxonase 1 activity in systemic lupus erythematosus-prone gld mice,” Arthritis and Rheumatism, vol. 63, no. 1, pp. 201–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. U. N. Khot, M. B. Khot, C. T. Bajzer et al., “Prevalence of conventional risk factors in patients with coronary heart disease,” Journal of the American Medical Association, vol. 290, no. 7, pp. 898–904, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. U. Nussinovitch and Y. Shoenfeld, “Intravenous immunoglobulin-indications and mechanisms in cardiovascular diseases,” Autoimmunity Reviews, vol. 7, no. 6, pp. 445–452, 2008. View at Publisher · View at Google Scholar · View at Scopus