About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 962702, 11 pages
http://dx.doi.org/10.1155/2012/962702
Review Article

Complement Diagnostics: Concepts, Indications, and Practical Guidelines

1Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden
2School of Natural Sciences, Linnæus University, 391 82 Kalmar, Sweden

Received 6 August 2012; Accepted 17 October 2012

Academic Editor: Daniel Rittirsch

Copyright © 2012 Bo Nilsson and Kristina Nilsson Ekdahl. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. E. Mollnes, T. S. Jokiranta, L. Truedsson, B. Nilsson, S. Rodriguez de Cordoba, and M. Kirschfink, “Complement analysis in the 21st century,” Molecular Immunology, vol. 44, no. 16, pp. 3838–3849, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, “Complement: a key system for immune surveillance and homeostasis,” Nature Immunology, vol. 11, no. 9, pp. 785–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Spitzer, L. M. Mitchell, J. P. Atkinson, and D. E. Hourcade, “Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly,” Journal of Immunology, vol. 179, no. 4, pp. 2600–2608, 2007. View at Scopus
  4. M. V. Carroll and R. B. Sim, “Complement in health and disease,” Advanced Drug Delivery Reviews, vol. 63, no. 12, pp. 965–975, 2011.
  5. Y. Banz and R. Rieben, “Role of complement and perspectives for intervention in ischemia-reperfusion damage,” Annals of Medicine, vol. 44, no. 3, pp. 205–217, 2012.
  6. S. Ram, L. A. Lewis, and P. A. Rice, “Infections of people with complement deficiencies and patients who have undergone splenectomy,” Clinical Microbiology Reviews, vol. 23, no. 4, pp. 740–780, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Skattum, M. Van Deuren, T. Van Der Poll, and L. Truedsson, “Complement deficiency states and associated infections,” Molecular Immunology, vol. 48, no. 14, pp. 1643–1655, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Hillmen, N. S. Young, J. Schubert et al., “The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria,” New England Journal of Medicine, vol. 355, no. 12, pp. 1233–1243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. A. Gruppo and R. P. Rother, “Eculizumab for congenital atypical hemolytic-uremic syndrome,” New England Journal of Medicine, vol. 360, no. 5, pp. 544–546, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Anne-Laure, M. Malina, V. Fremeaux-Bacchi et al., “Eculizumab in severe shiga-toxin—associated HUS,” New England Journal of Medicine, vol. 364, no. 26, pp. 2561–2563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Radhakrishnan, A. Lunn, M. Kirschfink, and P. Thorner, “Eculizumab and refractory membranoproliferative glomerulonephritis,” New England Journal of Medicine, vol. 366, no. 12, pp. 1165–1166, 2012.
  12. A. R. Biglarnia, B. Nilsson, T. Nilsson et al., “Prompt reversal of a severe complement activation by eculizumab in a patient undergoing intentional ABO-incompatible pancreas and kidney transplantation,” Transplant International, vol. 24, no. 8, pp. e61–e66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Luzzatto, “Paroxysmal nocturnal hemoglobinuria: an acquired X-linked genetic disease with somatic-cell mosaicism,” Current Opinion in Genetics and Development, vol. 16, no. 3, pp. 317–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Schrezenmeier and B. Höchsmann, “Drugs that inhibit complement,” Transfusion and Apheresis Science, vol. 46, no. 1, pp. 87–92, 2012.
  15. C. J. Parker, “Paroxysmal nocturnal hemoglobinuria,” Current Opinion in Hematology, vol. 19, no. 3, pp. 141–148, 2012.
  16. P. E. Spronk, P. C. Limburg, and C. G. M. Kallenberg, “Serological markers of disease activity in systemic lupus erythematosus,” Lupus, vol. 4, no. 2, pp. 86–94, 1995. View at Scopus
  17. J. Venzor, W. L. Lee, and D. P. Huston, “Urticarial vasculitis,” Clinical Reviews in Allergy and Immunology, vol. 23, no. 2, pp. 201–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Rostoker, J. M. Pawlotsky, A. Bastie, B. Weil, and D. Dhumeaux, “Type I membranoproliferative glomerulonephritis and HCV infection,” Nephrology Dialysis Transplantation, vol. 11, no. 4, supplement, pp. 22–24, 1996. View at Scopus
  19. H. A. Schneider, R. A. Yonker, P. Katz, and S. Longley, “Rheumatoid vasculitis: experience with 13 patients and review of the literature,” Seminars in Arthritis and Rheumatism, vol. 14, no. 4, pp. 280–286, 1985. View at Scopus
  20. B. Nilsson, K. Nilsson Ekdahl, A. Sjöholm, U. R. Nilsson, and G. Sturfelt, “Detection and characterization of immunoconglutinins in patients with systemic lupus erythematosus (SLE): serial analysis in relation to disease course,” Clinical and Experimental Immunology, vol. 90, no. 2, pp. 251–255, 1992. View at Scopus
  21. J. Rönnelid, I. Gunnarsson, K. Nilsson-Ekdahl, and B. Nilsson, “Correlation between anti-C1q and immune conglutinin levels, but not between levels of antibodies to the structurally related autoantigens C1q and type II collagen in SLE or RA,” Journal of Autoimmunity, vol. 10, no. 4, pp. 415–423, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. L. A. Trouw and M. R. Daha, “Role of anti-C1q autoantibodies in the pathogenesis of lupus nephritis,” Expert Opinion on Biological Therapy, vol. 5, no. 2, pp. 243–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Sethi, C. M. Nester, and R. J. Smith, “Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion,” Kidney International, vol. 81, no. 5, pp. 434–441, 2012.
  24. L. Sartz, A. I. Olin, A. C. Kristoffersson, and A. L. Ståhl, “A novel C3 mutation causing increased formation of the C3 convertase in familial atypical hemolytic uremic syndrome,” Journal of Immunology, vol. 188, no. 4, pp. 2030–2037, 2012.
  25. D. Westra, K. A. Vernon, E. B. Volokhina, M. C. Pickering, N. C. van de Kar, and L. P. van den Heuvel, “Atypical hemolytic uremic syndrome and genetic aberrations in the complement factor H-related 5 gene,” Journal of Human Genetics, vol. 57, no. 7, pp. 459–464, 2012.
  26. B. L. Zuraw and S. C. Christiansen, “Pathophysiology of hereditary angioedema,” American Journal of Rhinology & Allergy, vol. 25, no. 6, pp. 373–378, 2011.
  27. M. Cicardi, A. Beretta, M. Colombo, D. Gioffré, M. Cugno, and A. Agostoni, “Relevance of lymphoproliferative disorders and of anti-C1 inhibitor autoantibodies in acquired angio-oedem,” Clinical and Experimental Immunology, vol. 106, no. 3, pp. 475–480, 1996. View at Scopus
  28. M. Cicardi and A. Zanichelli, “The acquired deficiency of c1-inhibitor: lymphoproliferation and angioedema,” Current Molecular Medicine, vol. 10, no. 4, pp. 354–360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Norda, U. Schött, O. Berséus et al., “Complement activation products in liquid stored plasma and C3a kinetics after transfusion of autologous plasma,” Vox Sanguinis, vol. 102, no. 2, pp. 125–133, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Teisner, I. Brandslund, N. Grunnet, et al., “Acute complement activation during an anaphylactoid reaction to blood transfusion and the disappearance rate of C3c and C3d from the circulation,” Journal of Clinical and Laboratory Immunology, vol. 12, no. 2, pp. 63–67, 1983. View at Scopus
  31. K. Nilsson Ekdahl, B. Nilsson, M. Pekna, and U. R. Nilsson, “Generation of iC3 at the interface between blood and gas,” Scandinavian Journal of Immunology, vol. 35, no. 1, pp. 85–91, 1992. View at Scopus
  32. P. Garred, T. E. Mollnes, T. Lea, and E. Fischer, “Characterization of a monoclonal antibody MoAb bH6 reacting with a neoepitope of human C3 expressed on C3b, iC3b, and C3c,” Scandinavian Journal of Immunology, vol. 27, no. 3, pp. 319–327, 1988. View at Scopus
  33. T. E. Mollnes, T. Lea, S. S. Froland, and M. Harboe, “Quantification of the terminal complement complex in human plasma by an enzyme-linked immunosorbent assay based on monoclonal antibodies against a neoantigen of the complex,” Scandinavian Journal of Immunology, vol. 22, no. 2, pp. 197–202, 1985. View at Scopus
  34. K. N. Ekdahl, D. Norberg, A. A. Bengtsson, G. Sturfelt, U. R. Nilsson, and B. Nilsson, “Use of serum or buffer-changed EDTA-plasma in a rapid, inexpensive, and easy-to-perform hemolytic complement assay for differential diagnosis of systemic lupus erythematosus and monitoring of patients with the disease,” Clinical and Vaccine Immunology, vol. 14, no. 5, pp. 549–555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. M. M. Mayer, “Complement and complement fixation,” in Experimental Immunochemistry, E. A. Kabat and M. M. Mayer, Eds., pp. 97–139, Thomas, Springfield, Ill, USA, 1961.
  36. U. R. Nilsson and B. Nilsson, “Simplified assays of hemolytic activity of the classical and alternative complement pathways,” Journal of Immunological Methods, vol. 72, no. 1, pp. 49–59, 1984. View at Publisher · View at Google Scholar · View at Scopus
  37. T. A. E. Platts Mills and K. Ishizaka, “Activation of the alternate pathway of human complement by rabbit cells,” Journal of Immunology, vol. 113, no. 1, pp. 348–358, 1974. View at Scopus
  38. L. Truedsson, A. G. Sjöholm, and A. B. Laurell, “Screening for deficiencies in the classifcal and alternative pathways of complement by hemolysis in gel,” Acta Pathologica et Microbiologica Scandinavica Section C, vol. 89, no. 3, pp. 161–166, 1981. View at Scopus
  39. M. A. Seelen, A. Roos, J. Wieslander et al., “Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA,” Journal of Immunological Methods, vol. 296, no. 1-2, pp. 187–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. U. Rother, “A new screening test for C3 nephritis factor based on a stable cell bound convertase on sheep erythrocytes,” Journal of Immunological Methods, vol. 51, no. 1, pp. 101–107, 1982. View at Publisher · View at Google Scholar · View at Scopus
  41. D. K. Peters, A. Martin, A. Weinstein et al., “Complement studies in membrano-proliferative glomerulonephritis,” Clinical and Experimental Immunology, vol. 11, no. 3, pp. 311–320, 1972. View at Scopus
  42. L. Skattum, U. Mårtensson, and A. G. Sjöholm, “Hypocomplementaemia caused by C3 nephritic factors (C3 NeF): clinical findings and the coincidence of C3 NeF type II with anti-C1q autoantibodies,” Journal of Internal Medicine, vol. 242, no. 6, pp. 455–464, 1997. View at Scopus
  43. R. J. H. Smith, J. Alexander, P. N. Barlow, et al., “New approaches to the treatment of dense deposit disease,” Journal of the American Society of Nephrology, vol. 18, pp. 2447–2456, 2007.
  44. D. Paixao-Cavalcante, M. López-Trascasa, L. Skattum, et al., “Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation,” Kidney International, vol. 82, no. 10, pp. 1084–1092, 2012.
  45. B. Nilsson, K. Nilsson Ekdahl, M. Svarvare, A. Bjelle, and U. R. Nilsson, “Purification and characterization of IgG immunoconglutinins from patients with systemic lupus erythematosus: implications for a regulatory function,” Clinical and Experimental Immunology, vol. 82, no. 2, pp. 262–267, 1990. View at Scopus
  46. D. T. Johnston, “Diagnosis and management of Hereditary Angioedema,” Journal of the American Osteopathic Association, vol. 111, no. 1, pp. 28–36, 2011. View at Scopus
  47. A. Frazer-Abel and P. C. Giclas, “Update on laboratory tests for the diagnosis and differentiation of hereditary angioedema and acquired angioedema,” Allergy and Asthma Proceedings, vol. 32, supplement 1, pp. S17–S21, 2011.
  48. Y. Yang, E. K. Chung, L. W. Yee et al., “Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans,” American Journal of Human Genetics, vol. 80, no. 6, pp. 1037–1054, 2007. View at Publisher · View at Google Scholar · View at Scopus