About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 962927, 10 pages
http://dx.doi.org/10.1155/2012/962927
Review Article

Role of Complement in Multiorgan Failure

1Division of Trauma Surgery, Department of Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
2Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center for Traumatology, 1200 Vienna, Austria
3Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, University Hospital Ulm, 89075 Ulm, Germany

Received 6 September 2012; Accepted 11 November 2012

Academic Editor: Michael A. Flierl

Copyright © 2012 Daniel Rittirsch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Baue, “Multiple, progressive, or sequential systems failure. A syndrome of the 1970s,” Archives of Surgery, vol. 110, no. 7, pp. 779–781, 1975. View at Scopus
  2. V. D. Mayr, M. W. Dünser, V. Greil et al., “Causes of death and determinants of outcome in critically ill patients,” Critical Care, vol. 10, no. 6, article R154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Blanco, A. Muriel-Bombín, V. Sagredo et al., “Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study,” Critical Care, vol. 12, no. 6, article R158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemiology of sepsis in the United States from 1979 through 2000,” The New England Journal of Medicine, vol. 348, no. 16, pp. 1546–1554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Demetriades, J. Murray, K. Charalambides et al., “Trauma fatalities: time and location of hospital deaths,” Journal of the American College of Surgeons, vol. 198, no. 1, pp. 20–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sauaia, F. A. Moore, E. E. Moore et al., “Epidemiology of trauma deaths: a reassessment,” Journal of Trauma, vol. 38, no. 2, pp. 185–193, 1995. View at Scopus
  7. A. E. Baue, “MOF, MODS, and SIRS: what is in a name or an acronym?” Shock, vol. 26, no. 5, pp. 438–449, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. C. Marshall, D. J. Cook, N. V. Christou, G. R. Bernard, C. L. Sprung, and W. J. Sibbald, “Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome,” Critical Care Medicine, vol. 23, no. 10, pp. 1638–1652, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. J. L. Vincent, R. Moreno, J. Takala et al., “The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure,” Intensive Care Medicine, vol. 22, no. 7, pp. 707–710, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. R. M. Durham, J. J. Moran, J. E. Mazuski, M. J. Shapiro, A. E. Baue, and L. M. Flint, “Multiple Organ Failure in Trauma Patients,” Journal of Trauma, vol. 55, no. 4, pp. 608–616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Keel and O. Trentz, “Pathophysiology of polytrauma,” Injury, vol. 36, no. 6, pp. 691–709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Hotchkiss and I. E. Karl, “The pathophysiology and treatment of sepsis,” The New England Journal of Medicine, vol. 348, no. 2, pp. 138–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Rittirsch, M. A. Flierl, and P. A. Ward, “Harmful molecular mechanisms in sepsis,” Nature Reviews Immunology, vol. 8, no. 10, pp. 776–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. S. Hotchkiss, P. E. Swanson, B. D. Freeman et al., “Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction,” Critical Care Medicine, vol. 27, no. 7, pp. 1230–1251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Goya, T. Morisaki, and M. Torisu, “Immunologic assessment of host defense impairment in patients with septic multiple organ failure: relationship between complement activation and changes in neutrophil function,” Surgery, vol. 115, no. 2, pp. 145–155, 1994. View at Scopus
  16. F. Hecke, U. Schmidt, A. Kola, W. Bautsch, A. Klos, and J. Köhl, “Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome,” Critical Care Medicine, vol. 25, no. 12, pp. 2015–2024, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Fosse, J. Pillgram-Larsen, J. L. Svennevig et al., “Complement activation in injured patients occurs immediately and is dependent on the severity of the trauma,” Injury, vol. 29, no. 7, pp. 509–514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. H. J. Kang, J. H. Kim, E. H. Lee, Y. K. Lee, M. Hur, and K. M. Lee, “Change of complement system predicts the outcome of patients with severe thermal injury,” Journal of Burn Care and Rehabilitation, vol. 24, no. 3, pp. 148–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Bengtson and M. Heideman, “Altered anaphylatoxin activity during induced hypoperfusion in acute and elective abdominal aortic surgery,” Journal of Trauma, vol. 26, no. 7, pp. 631–637, 1986. View at Scopus
  20. H. Nakae, S. Endo, K. Inada, and M. Yoshida, “Chronological changes in the complement system in sepsis,” Surgery Today, vol. 26, no. 4, pp. 225–229, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. M. T. Ganter, K. Brohi, M. J. Cohen et al., “Role of the alternative pathway in the early complement activation following major trauma,” Shock, vol. 28, no. 1, pp. 29–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Burk, M. Martin, M. A. Flierl, D. Rittirsch, M. Helm, et al., “Early complementopathy after multiple injuries in humans,” Shock, vol. 37, pp. 348–354, 2012. View at Publisher · View at Google Scholar
  23. T. Zimmermann, Z. Laszik, S. Nagy, J. Kaszaki, and F. Joo, “The role of the complement system in the pathogenesis of multiple organ failure in shock,” Progress in Clinical and Biological Research, vol. 308, pp. 291–297, 1989. View at Scopus
  24. M. Huber-Lang, V. J. Sarma, K. T. Lu et al., “Role of C5a in multiorgan failure during sepsis,” Journal of Immunology, vol. 166, no. 2, pp. 1193–1199, 2001. View at Scopus
  25. B. J. Czermak, V. Sarma, C. L. Pierson et al., “Protective effects of C5a blockade in sepsis,” Nature Medicine, vol. 5, no. 7, pp. 788–792, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Rittirsch, M. A. Flierl, B. A. Nadeau et al., “Functional roles for C5a receptors in sepsis,” Nature Medicine, vol. 14, no. 5, pp. 551–557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. I. J. Laudes, J. C. Chu, S. Sikranth et al., “Anti-C5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis,” American Journal of Pathology, vol. 160, no. 5, pp. 1867–1875, 2002. View at Scopus
  28. M. Huber-Lang, J. V. Sarma, F. S. Zetoune et al., “Generation of C5a in the absence of C3: a new complement activation pathway,” Nature Medicine, vol. 12, no. 6, pp. 682–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Markiewski, B. Nilsson, K. N. Ekdahl, T. E. Mollnes, and J. D. Lambris, “Complement and coagulation: strangers or partners in crime?” Trends in Immunology, vol. 28, no. 4, pp. 184–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. U. Amara, D. Rittirsch, M. Flierl et al., “Interaction between the coagulation and complement system,” Advances in Experimental Medicine and Biology, vol. 632, pp. 71–79, 2008. View at Scopus
  31. K. B. Reid and R. R. Porter, “The proteolytic activation systems of complement,” Annual Review of Biochemistry, vol. 50, pp. 433–464, 1981. View at Scopus
  32. H. J. Muller-Eberhard, “Molecular organization and function of the complement system,” Annual Review of Biochemistry, vol. 57, pp. 321–347, 1988. View at Scopus
  33. T. Fujita, “Evolution of the lectin—complement pathway and its role in innate immunity,” Nature Reviews Immunology, vol. 2, no. 5, pp. 346–353, 2002. View at Scopus
  34. U. Amara, M. A. Flierl, D. Rittirsch et al., “Molecular intercommunication between the complement and coagulation systems,” Journal of Immunology, vol. 185, no. 9, pp. 5628–5636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Huber-Lang, E. M. Younkin, J. V. Sarma et al., “Generation of C5a by phagocytic cells,” American Journal of Pathology, vol. 161, no. 5, pp. 1849–1859, 2002. View at Scopus
  36. W. Vogt, “Cleavage of the fifth component of complement and generation of a functionally active C5b6-like complex by human leukocyte elastase,” Immunobiology, vol. 201, no. 3-4, pp. 470–477, 2000. View at Scopus
  37. C. L. Sprung, D. R. Schultz, and E. Marcial, “Complement activation in septic shock patients,” Critical Care Medicine, vol. 14, no. 6, pp. 525–528, 1986. View at Scopus
  38. J. Charchaflieh, J. Wei, G. Labaze, Y. J. Hou, B. Babarsh, et al., “The role of complement system in septic shock,” Clinical and Developmental Immunology, vol. 2012, Article ID 407324, 8 pages, 2012. View at Publisher · View at Google Scholar
  39. Y. M. Bilgin, A. Brand, S. P. Berger, M. R. Daha, and A. Roos, “Mannose-binding lectin is involved in multiple organ dysfunction syndrome after cardiac surgery: effects of blood transfusions,” Transfusion, vol. 48, no. 4, pp. 601–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. D. P. Eisen, M. M. Dean, P. Thomas et al., “Low mannose-binding lectin function is associated with sepsis in adult patients,” FEMS Immunology and Medical Microbiology, vol. 48, no. 2, pp. 274–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. B. P. Morgan and P. Gasque, “Expression of complement in the brain: role in health and disease,” Immunology Today, vol. 17, no. 10, pp. 461–466, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Levi-Strauss and M. Mallat, “Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation,” Journal of Immunology, vol. 139, no. 7, pp. 2361–2366, 1987. View at Scopus
  43. M. Hosokawa, A. Klegeris, J. Maguire, and P. L. McGeer, “Expression of complement messenger RNAs and proteins by human oligodendroglial cells,” GLIA, vol. 42, no. 4, pp. 417–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. O. I. Schmidt, C. E. Heyde, W. Ertel, and P. F. Stahel, “Closed head injury—an inflammatory disease?” Brain Research Reviews, vol. 48, no. 2, pp. 388–399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. Flierl, D. Rittirsch, M. S. Huber-Lang, and P. F. Stahel, “Pathophysiology of septic encephalopathy—an unsolved puzzle,” Critical Care, vol. 14, no. 3, article 165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. J. Lindsberg, J. Öhman, T. Lehto et al., “Complement activation in the central nervous system following blood- brain barrier damage in man,” Annals of Neurology, vol. 40, no. 4, pp. 587–596, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. P. F. Stahel, M. C. Morganti-Kossmann, and T. Kossmann, “The role of the complement system in traumatic brain injury,” Brain Research Reviews, vol. 27, no. 3, pp. 243–256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. N. J. Lynch, C. L. Willis, C. C. Nolan et al., “Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats,” Molecular Immunology, vol. 40, no. 10, pp. 709–716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. J. Weiss, “Tissue destruction by neutrophils,” The New England Journal of Medicine, vol. 320, no. 6, pp. 365–376, 1989. View at Scopus
  50. M. A. Flierl, P. F. Stahel, D. Rittirsch et al., “Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis,” Critical Care, vol. 13, no. 1, article R12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. L. Keeling, R. R. Hicks, J. Mahesh, B. B. Billings, and G. J. Kotwal, “Local neutrophil influx following lateral fluid-percussion brain injury in rats is associated with accumulation of complement activation fragments of the third component (C3) of the complement system,” Journal of Neuroimmunology, vol. 105, no. 1, pp. 20–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Leinhase, V. M. Holers, J. M. Thurman et al., “Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation,” BMC Neuroscience, vol. 7, article no. 55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Leinhase, M. Rozanski, D. Harhausen et al., “Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice,” Journal of Neuroinflammation, vol. 4, article 13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Farkas, L. Baranyi, M. Takahashi et al., “A neuronal C5a receptor and an associated apoptotic signal transduction pathway,” Journal of Physiology, vol. 507, no. 3, pp. 679–687, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Nataf, P. F. Stahel, N. Davoust, and S. R. Barnum, “Complement anaphylatoxin receptors on neurons: new tricks for old receptors?” Trends in Neurosciences, vol. 22, no. 9, pp. 397–402, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. S. K. Singhrao, J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque, “Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis,” American Journal of Pathology, vol. 157, no. 3, pp. 905–918, 2000. View at Scopus
  57. H. Osaka, P. Mukherjee, P. S. Aisen, and G. M. Pasinetti, “Complement-derived anaphylatoxin C5a protects against glutamate-mediated neurotoxicity,” Journal of Cellular Biochemistry, vol. 73, pp. 303–311, 1999.
  58. K. Heese, C. Hock, and U. Otten, “Inflammatory signals induce neurotrophin expression in human microglial cells,” Journal of Neurochemistry, vol. 70, no. 2, pp. 699–707, 1998. View at Scopus
  59. C. J. Clark, W. H. Reid, A. J. Pollock, D. Campbell, and C. Gemmell, “Role of pulmonary alveolar macrophage activation in acute lung injury after burns and smoke inhalation,” The Lancet, vol. 2, no. 8616, pp. 872–874, 1988. View at Scopus
  60. T. O. White, P. J. Jenkins, R. D. Smith, C. W. J. Cartlidge, and C. M. Robinson, “The epidemiology of posttraumatic adult respiratory distress syndrome,” Journal of Bone and Joint Surgery A, vol. 86, no. 11, pp. 2366–2376, 2004. View at Scopus
  61. G. D. Rubenfeld, E. Caldwell, E. Peabody et al., “Incidence and outcomes of acute lung injury,” The New England Journal of Medicine, vol. 353, no. 16, pp. 1685–1693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Hetland, E. Johnson, and U. Aasebo, “Human alveolar macrophages synthesize the functional alternative pathway of complement and active C5 and C9 in vitro,” Scandinavian Journal of Immunology, vol. 24, no. 5, pp. 603–608, 1986. View at Scopus
  63. R. C. Strunk, D. M. Eidlen, and R. J. Mason, “Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways,” Journal of Clinical Investigation, vol. 81, no. 5, pp. 1419–1426, 1988. View at Scopus
  64. B. L. Rothman, M. Merrow, A. Despins, T. Kennedy, and D. L. Kreutzer, “Effect of lipopolysaccharide on C3 and C5 production by human lung cells,” Journal of Immunology, vol. 143, no. 1, pp. 196–202, 1989. View at Scopus
  65. W. T. Watford, A. J. Ghio, and J. R. Wright, “Complement-mediated host defense in the lung,” American Journal of Physiology, vol. 279, no. 5, pp. L790–L798, 2000. View at Scopus
  66. W. T. Watford, J. R. Wright, C. G. Hester, H. Jiang, and M. M. Frank, “Surfactant protein A regulates complement activation,” Journal of Immunology, vol. 167, no. 11, pp. 6593–6600, 2001. View at Scopus
  67. D. E. Hammerschmidt, L. J. Weaver, and L. D. Hudson, “Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome. Pathophysiological relevance and possible prognostic value,” The Lancet, vol. 1, no. 8175, pp. 947–949, 1980. View at Scopus
  68. J. S. Solomkin, L. A. Cotta, P. S. Satoh, J. M. Hurst, and R. D. Nelson, “Complement activation and clearance in acute illness and injury: evidence for C5a as a cell-directed mediator of the adult respiratory distress syndrome in man,” Surgery, vol. 97, no. 6, pp. 668–678, 1985. View at Scopus
  69. P. F. Langlois and M. S. Gawryl, “Accentuated formation of the terminal C5b-9 complement complex in patient plasma precedes development of the adult respiratory distress syndrome,” American Review of Respiratory Disease, vol. 138, no. 2, pp. 368–375, 1988. View at Scopus
  70. G. Zilow, J. A. Sturm, U. Rother, and M. Kirschfink, “Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome,” Clinical and Experimental Immunology, vol. 79, no. 2, pp. 151–157, 1990. View at Scopus
  71. P. F. Weinberg, M. A. Matthay, R. O. Webster, K. V. Roskos, I. M. Goldstein, and J. F. Murray, “Biologically active products of complement and acute lung injury in patients with the sepsis syndrome,” American Review of Respiratory Disease, vol. 130, no. 5, pp. 791–796, 1984. View at Scopus
  72. M. Bosmann and P. A. Ward, “Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis,” Advances in Experimental Medicine and Biology, vol. 946, pp. 147–159, 2012.
  73. R. F. Guo and P. A. Ward, “Role of C5a in inflammatory responses,” Annual Review of Immunology, vol. 23, pp. 821–852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. W. Seeger, A. Gunther, H. D. Walmrath, F. Grimminger, and H. G. Lasch, “Alveolar surfactant and adult respiratory distress syndrome. Pathogenetic role and therapeutic prospects,” Clinical Investigator, vol. 71, no. 3, pp. 177–190, 1993. View at Scopus
  75. A. C. Carvalho, S. DeMarinis, C. F. Scott, L. D. Silver, A. H. Schmaier, and R. W. Colman, “Activation of the contact system of plasma proteolysis in the adult respiratory distress syndrome,” Journal of Laboratory and Clinical Medicine, vol. 112, no. 2, pp. 270–277, 1988. View at Scopus
  76. T. Fuchs-Buder, P. De Moerloose, B. Ricou et al., “Time course of procoagulant activity and D dimer in bronchoalveolar fluid of patients at risk for or with acute respiratory distress syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 163–167, 1996. View at Scopus
  77. W. Seeger, J. Hubel, K. Klapettek et al., “Procoagulant activity in bronchoalveolar lavage of severely traumatized patients—relation to the development of acute respiratory distress,” Thrombosis Research, vol. 61, no. 1, pp. 53–64, 1991. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Balk, T. Emerson, F. Fourrier et al., “Therapeutic use of antithrombin concentrate in sepsis,” Seminars in Thrombosis and Hemostasis, vol. 24, no. 2, pp. 183–194, 1998. View at Scopus
  79. E. Abraham, “Coagulation abnormalities in acute lung injury and sepsis,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 4, pp. 401–404, 2000. View at Scopus
  80. S. Krishnagopalan, A. Kumar, J. E. Parrillo, and A. Kumar, “Myocardial dysfunction in the patient with sepsis,” Current Opinion in Critical Care, vol. 8, no. 5, pp. 376–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Kumar, R. Brar, P. Wang et al., “Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility,” American Journal of Physiology, vol. 276, no. 1, pp. R265–R276, 1999. View at Scopus
  82. J. A. Burke, R. Levi, Z. G. Guo, and E. J. Corey, “Leukotrienes C4, D4 and E4: effects on human and guinea-pig cardiac preparations in vitro,” Journal of Pharmacology and Experimental Therapeutics, vol. 221, no. 1, pp. 235–241, 1982. View at Scopus
  83. A. Carli, M. C. Auclair, and C. Vernimmen, “Indomethacin suppresses the early cardiodepressant factor released by endotoxin in the rat: possible involvement of a prostacyclin-related material,” Advances in Shock Research, vol. 10, pp. 161–171, 1983. View at Scopus
  84. R. D. Goldfarb, P. Weber, and J. Eisenman, “Isolation of a shock-induced circulating cardiodepressant substance,” The American Journal of Physiology, vol. 237, no. 2, pp. H168–H177, 1979. View at Scopus
  85. M. Odeh, “Tumor necrosis factor-α as a myocardial depressant substance,” International Journal of Cardiology, vol. 42, no. 3, pp. 231–238, 1993. View at Publisher · View at Google Scholar · View at Scopus
  86. J. E. Parrillo, C. Burch, J. H. Shelhamer, M. M. Parker, C. Natanson, and W. Schuette, “A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance,” Journal of Clinical Investigation, vol. 76, no. 4, pp. 1539–1553, 1985. View at Scopus
  87. K. T. Moran, T. J. O'Reilly, M. Allo, and A. M. Munster, “Anaphylotoxin levels following thermal injury,” Burns, vol. 13, no. 4, pp. 266–268, 1987. View at Scopus
  88. W. J. Schirmer, J. M. Schirmer, G. B. Naff, and D. E. Fry, “Systemic complement activation produces hemodynamic changes characteristic of sepsis,” Archives of Surgery, vol. 123, no. 3, pp. 316–321, 1988. View at Scopus
  89. W. J. Schirmer, J. M. Schirmer, G. B. Naff, and D. E. Fry, “Complement-mediated hemodynamic depression in the early postburn period,” Journal of Trauma, vol. 29, no. 7, pp. 932–939, 1989. View at Scopus
  90. A. D. Niederbichler, L. M. Hoesel, M. V. Westfall et al., “An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 53–61, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. L. M. Hoesel, A. D. Niederbichler, J. Schaefer et al., “C5a-blockade improves burn-induced cardiac dysfunction,” Journal of Immunology, vol. 178, no. 12, pp. 7902–7910, 2007. View at Scopus
  92. L. L. Wu, Y. Ji, L. W. Dong, and M. S. Liu, “Calcium uptake by sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat heart,” Shock, vol. 15, no. 1, pp. 49–55, 2001. View at Scopus
  93. J. A. Watts, J. A. Kline, L. R. Thornton, R. M. Grattan, and S. S. Brar, “Metabolic dysfunction and depletion of mitochondria in hearts of septic rats,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 1, pp. 141–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Atefi, F. S. Zetoune, T. J. Herron et al., “Complement dependency of cardiomyocyte release of mediators during sepsis,” FASEB Journal, vol. 25, no. 7, pp. 2500–2508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. R. J. Levy, D. A. Piel, P. D. Acton et al., “Evidence of myocardial hibernation in the septic heart,” Critical Care Medicine, vol. 33, no. 12, pp. 2752–2756, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Chakraborti, A. Mandal, M. Mandal, S. Das, and S. Chakraborti, “Complement activation in heart diseases: role of oxidants,” Cellular Signalling, vol. 12, no. 9-10, pp. 607–617, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Murohara, J. Guo, J. A. Delyani, and A. M. Lefer, “Cardioprotective effects of selective inhibition of the two complement activation pathways in myocardial ischemia and reperfusion injury,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 17, no. 8, pp. 499–507, 1995. View at Scopus
  98. M. Buerke, D. Prüfer, M. Dahm, H. Oelert, J. Meyer, and H. Darius, “Blocking of classical complement pathway inhibits endothelial adhesion molecule expression and preserves ischemic myocardium from reperfusion injury,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 429–438, 1998. View at Scopus
  99. J. Fu, G. Lin, B. Zeng et al., “Anti-ischemia/reperfusion of C1 inhibitor in myocardial cell injury via regulation of local myocardial C3 activity,” Biochemical and Biophysical Research Communications, vol. 350, no. 1, pp. 162–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Fu, G. Lin, Z. Wu et al., “Anti-apoptotic role for C1 inhibitor in ischemia/reperfusion-induced myocardial cell injury,” Biochemical and Biophysical Research Communications, vol. 349, no. 2, pp. 504–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Whaley and W. Schwaeble, “Complement and complement deficiencies,” Seminars in Liver Disease, vol. 17, no. 4, pp. 297–310, 1997. View at Scopus
  102. D. J. Koo, I. H. Chaudry, and P. Wang, “Kupffer cells are responsible for producing inflammatory cytokines and hepatocellular dysfunction during early sepsis,” Journal of Surgical Research, vol. 83, no. 2, pp. 151–157, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Sheth and P. Bankey, “The liver as an immune organ,” Current Opinion in Critical Care, vol. 7, no. 2, pp. 99–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. R. S. Croner, T. G. Lehmann, C. Fallsehr, C. Herfarth, E. Klar, and M. Kirschfink, “C1-inhibitor reduces hepatic leukocyte-endothelial interaction and the expression of VCAM-1 in LPS-induced sepsis in the rat,” Microvascular Research, vol. 67, no. 2, pp. 182–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Jaeschke, “Cellular adhesion molecules: regulation and functional significance in the pathogenesis of liver diseases,” American Journal of Physiology, vol. 273, no. 3, pp. G602–G611, 1997. View at Scopus
  106. H. Jaeschke, A. Farhood, M. A. Fisher, and C. W. Smith, “Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of β2 integrins and intercellular adhesion molecule-1,” Shock, vol. 6, no. 5, pp. 351–356, 1996. View at Scopus
  107. C. A. Koch, A. Kanazawa, R. Nishitai et al., “Intrinsic resistance of hepatocytes to complement-mediated injury,” Journal of Immunology, vol. 174, no. 11, pp. 7302–7309, 2005. View at Scopus
  108. A. I. Jacob, P. K. Goldberg, and N. Bloom, “Endotoxin and bacteria in portal blood,” Gastroenterology, vol. 72, no. 6, pp. 1268–1270, 1977. View at Scopus
  109. C. D. Wrann, N. A. Tabriz, T. Barkhausen et al., “The phosphatidylinositol 3-kinase signaling pathway exerts protective effects during sepsis by controlling C5a-mediated activation of innate immune functions,” Journal of Immunology, vol. 178, no. 9, pp. 5940–5948, 2007. View at Scopus
  110. P. N. Cunningham, V. M. Holers, J. J. Alexander, J. M. Guthridge, M. C. Carroll, and R. J. Quigg, “Complement is activated in kidney by endotoxin but does not cause the ensuing acute renal failure,” Kidney International, vol. 58, no. 4, pp. 1580–1587, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. G. Camussi, C. Ronco, G. Montrucchio, and G. Piccoli, “Role of soluble mediators in sepsis and renal failure,” Kidney International, vol. 53, no. 66, pp. S38–S42, 1998. View at Scopus
  112. M. Oppermann, M. Haubitz, E. Quentin, and O. Gotze, “Complement activation in patients with renal failure as detected through the quantitation of fragments of the complement proteins C3, C5, and factor B,” Klinische Wochenschrift, vol. 66, no. 18, pp. 857–864, 1988. View at Scopus
  113. B. H. Ault and H. R. Colten, “Cellular specificity of murine renal C3 expression in two models of inflammation,” Immunology, vol. 81, no. 4, pp. 655–660, 1994. View at Scopus
  114. R. A. Brooimans, A. P. A. Stegmann, W. T. Van Dorp et al., “Interleukin 2 mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells,” Journal of Clinical Investigation, vol. 88, no. 2, pp. 379–384, 1991. View at Scopus
  115. S. Tang, W. Zhou, N. S. Sheerin, R. W. Vaughan, and S. H. Sacks, “Contribution of renal secreted complement C3 to the circulating pool in humans,” Journal of Immunology, vol. 162, no. 7, pp. 4336–4341, 1999. View at Scopus
  116. L. Biancone, S. David, V. D. Pietra, G. Montrucchio, V. Cambi, and G. Camussi, “Alternative pathway activation of complement by cultured human proximal tubular epithelial cells,” Kidney International, vol. 45, no. 2, pp. 451–460, 1994. View at Scopus
  117. S. Ichida, Y. Yuzawa, H. Okada, K. Yoshioka, and S. Matsuo, “Localization of the complement regulatory proteins in the normal human kidney,” Kidney International, vol. 46, no. 1, pp. 89–96, 1994. View at Scopus
  118. J. M. Thurman, M. S. Lucia, D. Ljubanovic, and V. M. Holers, “Acute tubular necrosis is characterized by activation of the alternative pathway of complement,” Kidney International, vol. 67, no. 2, pp. 524–530, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Smedegard, L. Cui, and T. E. Hugli, “Endotoxin-induced shock in the rat. A role for C5a,” American Journal of Pathology, vol. 135, no. 3, pp. 489–497, 1989. View at Scopus
  120. M. M. Krem and E. D. Cera, “Evolution of enzyme cascades from embryonic development to blood coagulation,” Trends in Biochemical Sciences, vol. 27, no. 2, pp. 67–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. C. T. Esmon, “The impact of the inflammatory response on coagulation,” Thrombosis Research, vol. 114, no. 5-6, pp. 321–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Gando, T. Kameue, N. Matsuda et al., “Combined activation of coagulation and inflammation has an important role in multiple organ dysfunction and poor outcome after severe trauma,” Thrombosis and Haemostasis, vol. 88, no. 6, pp. 943–949, 2002. View at Scopus
  123. M. Levi, E. De Jonge, and T. Van Der Poll, “New treatment strategies for disseminated intravascular coagulation based on current understanding of the pathophysiology,” Annals of Medicine, vol. 36, no. 1, pp. 41–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. B. Ghebrehiwet, M. Silverberg, and A. P. Kaplan, “Activation of the classical pathway of complement by Hageman factor fragment,” Journal of Experimental Medicine, vol. 153, no. 3, pp. 665–676, 1981. View at Scopus
  125. G. Goldberger, M. L. Thomas, and B. F. Tack, “NH2-terminal structure and cleavage of guinea pig pro-C3, the precursor of the third complement component,” Journal of Biological Chemistry, vol. 256, no. 24, pp. 12617–12619, 1981. View at Scopus
  126. M. L. Thoman, J. L. Meuth, and E. L. Morgan, “C3d-K, a kallikrein cleavage fragment of iC3b is a potent inhibitor of cellular proliferation,” Journal of Immunology, vol. 133, no. 5, pp. 2629–2633, 1984. View at Scopus
  127. T. W. Muhlfelder, J. Niemetz, and D. Kreutzer, “C5 chemotactic fragment induces leukocyte production of tissue factor activity. A link between complement and coagulation,” Journal of Clinical Investigation, vol. 63, no. 1, pp. 147–150, 1979. View at Scopus
  128. S. M. Rezende, R. E. Simmonds, and D. A. Lane, “Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S-C4b binding protein complex,” Blood, vol. 103, no. 4, pp. 1192–1201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. G. R. Bernard, J. L. Vincent, P. F. Laterre et al., “Efficacy and safety of recombinant human activated protein C for severe sepsis,” The New England Journal of Medicine, vol. 344, no. 10, pp. 699–709, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. C. Caliezi, S. Zeerleder, M. Redondo et al., “C1-inhibitor in patients with severe sepsis and septic shock: beneficial effect on renal dysfunction,” Critical Care Medicine, vol. 30, no. 8, pp. 1722–1728, 2002. View at Scopus
  131. R. Silasi-Mansat, H. Zhu, N. I. Popescu et al., “Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis,” Blood, vol. 116, no. 6, pp. 1002–1010, 2010. View at Publisher · View at Google Scholar · View at Scopus