About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 261037, 10 pages
http://dx.doi.org/10.1155/2013/261037
Review Article

Role of Th17 Cells in Skin Inflammation of Allergic Contact Dermatits

German Federal Institute for Risk Assessment (BfR), Department of Chemicals Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany

Received 15 April 2013; Accepted 8 July 2013

Academic Editor: C. Morimoto

Copyright © 2013 Matthias Peiser. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Landsteiner and M. W. Chase, “Studies on the sensitization of animals with simple chemical compounds: iV. Anaphylaxis induced by picryl chloride and 2:4 dinitrochlorobenzene,” The Journal of Experimental Medicine, vol. 66, pp. 337–351, 1937.
  2. A. Chew and H. I. Maibach, “Occupational issues of irritant contact dermatitis,” International Archives of Occupational and Environmental Health, vol. 76, no. 5, pp. 339–346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Nosbaum, M. Vocanson, A. Rozieres, A. Hennino, and J. Nicolas, “Allergic and irritant contact dermatitis,” European Journal of Dermatology, vol. 19, no. 4, pp. 325–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. F. O. Nestle, P. Di Meglio, J. Qin, and B. J. Nickoloff, “Skin immune sentinels in health and disease,” Nature Reviews Immunology, vol. 9, no. 10, pp. 679–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Lepoittevin, “Metabolism versus chemical transformation or pro- versus prehaptens?” Contact Dermatitis, vol. 54, no. 2, pp. 73–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. H. Kaplan, B. Z. Igyártó, and A. A. Gaspari, “Early immune events in the induction of allergic contact dermatitis,” Nature Reviews Immunology, vol. 12, no. 2, pp. 114–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Z. Igyarto and D. H. Kaplan, “The evolving function of Langerhans cells in adaptive skin immunity,” Immunology and Cell Biology, vol. 88, no. 4, pp. 361–365, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Romani, B. E. Clausen, and P. Stoitzner, “Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin,” Immunological Reviews, vol. 234, no. 1, pp. 120–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. C. R. F. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer, “Three-dimensional segregation of supramolecular activation clusters in T cells,” Nature, vol. 395, no. 6697, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Greenwald, G. J. Freeman, and A. H. Sharpe, “The B7 family revisited,” Annual Review of Immunology, vol. 23, pp. 515–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Tang, T. A. Judge, B. J. Nickoloff, and L. A. Turka, “Suppression of murine allergic contact dermatitis by CTLA4Ig: tolerance induction of Th2 responses requires additional blockade of CD40-ligand,” The Journal of Immunology, vol. 157, no. 1, pp. 117–125, 1996. View at Scopus
  13. A. Schwarz, S. Beissert, K. Grosse-Heitmeyer et al., “Evidence for functional relevance of CTLA-4 in ultraviolet-radiation- induced tolerance,” The Journal of Immunology, vol. 165, no. 4, pp. 1824–1831, 2000. View at Scopus
  14. C. Bangert, J. Friedl, G. Stary, G. Stingl, and T. Kopp, “Immunopathologic features of allergic contact dermatitis in humans: participation of plasmacytoid dendritic cells in the pathogenesis of the disease?” Journal of Investigative Dermatology, vol. 121, no. 6, pp. 1409–1418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Guo, M. Stolina, J. V. Bready et al., “Stimulatory effects of B7-related protein-1 on cellular and humoral immune responses in mice,” The Journal of Immunology, vol. 166, no. 9, pp. 5578–5584, 2001. View at Scopus
  16. S. Wong, A. H. Tan, and K. Lam, “Functional hierarchy and relative contribution of the CD28/B7 and ICOS/B7-H2 costimulatory pathways to T cell-mediated delayed-type hypersensitivity,” Cellular Immunology, vol. 256, no. 1-2, pp. 64–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Tsushima, H. Iwai, N. Otsuki et al., “Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses,” European Journal of Immunology, vol. 33, no. 10, pp. 2773–2782, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. K. Hee, H. Guan, G. Zu et al., “High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals,” Journal of Leukocyte Biology, vol. 79, no. 4, pp. 686–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Hitzler, O. Majdic, G. Heine et al., “Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy,” PLoS ONE, vol. 7, Article ID e46776, 2012.
  20. J. C. Dudda, A. Lembo, E. Bachtanian et al., “Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments,” European Journal of Immunology, vol. 35, no. 4, pp. 1056–1065, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. H. Kaplan, A. Kissenpfennig, and B. E. Clausen, “Insights into Langerhans cell function from Langerhans cell ablation models,” European Journal of Immunology, vol. 38, no. 9, pp. 2369–2376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. Bennett, E. van Rijn, S. Jung et al., “Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity,” Journal of Cell Biology, vol. 169, no. 4, pp. 569–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. D. H. Kaplan, M. C. Jenison, S. Saeland, W. D. Shlomchik, and M. J. Shlomchik, “Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity,” Immunity, vol. 23, no. 6, pp. 611–620, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. L. S. Bursch, L. Wang, B. Igyarto et al., “Identification of a novel population of Langerin+ dendritic cells,” Journal of Experimental Medicine, vol. 204, no. 13, pp. 3147–3156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Kissenpfennig, S. Henri, B. Dubois et al., “Dynamics and function of langerhans cells in vivo: dermal dendritic cells colonize lymph node areasdistinct from slower migrating langerhans cells,” Immunity, vol. 22, no. 5, pp. 643–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Fukunaga, N. M. Khaskhely, C. S. Sreevidya, S. N. Byrne, and S. E. Ullrich, “Dermal dendritic cells, and not Langerhans cells, play an essential role in inducing an immune response,” The Journal of Immunology, vol. 180, no. 5, pp. 3057–3064, 2008. View at Scopus
  27. S. Nakajima, B. Z. Igyártó, T. Honda et al., “Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling,” Journal of Allergy and Clinical Immunology, vol. 129, no. 4, pp. 1048.e6–1055.e6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Haley, B. Z. Igyártó, D. Ortner et al., “Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration,” The Journal of Immunology, vol. 188, no. 9, pp. 4334–4339, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Grabbe, K. Steinbrink, M. Steinert, T. A. Luger, and T. Schwarz, “Removal of the majority of epidermal Langerhans cells by topical or systemic steroid application enhances the effector phase of murine contact hypersensitivity,” The Journal of Immunology, vol. 155, no. 9, pp. 4207–4217, 1995. View at Scopus
  30. A. Kubo, K. Nagao, M. Yokouchi, H. Sasaki, and M. Amagai, “External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 2937–2946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Watanabe, O. Gaide, V. Pétrilli et al., “Activation of the IL-1β-processing inflammasome is involved in contact hypersensitivity,” Journal of Investigative Dermatology, vol. 127, no. 8, pp. 1956–1963, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. I. R. Williams, R. J. Ort, and T. S. Kupper, “Keratinocyte expression of B7-1 in transgenic mice amplifies the primary immune response to cutaneous antigens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12780–12784, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. T. A. Ferguson, P. Dube, and T. S. Griffith, “Regulation of contact hypersensitivity by interleukin 10,” Journal of Experimental Medicine, vol. 179, no. 5, pp. 1597–1604, 1994. View at Scopus
  34. H. Fujita, K. E. Nograles, T. Kikuchi, J. Gonzalez, J. A. Carucci, and J. G. Krueger, “Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21795–21800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. S. Duraisingham, J. Hornig, F. Gotch, and S. Patterson, “TLR-stimulated CD34 stem cell-derived human skin-like and monocyte-derived dendritic cells fail to induce Th17 polarization of naive T cells but do stimulate Th1 and Th17 memory responses,” The Journal of Immunology, vol. 183, no. 4, pp. 2242–2251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Takeda and S. Akira, “Toll-like receptors,” in Current Protocols in Immunology, Unit 14. 12, chapter 14, Wiley, New York, NY, USA, 2007.
  38. A. Iwasaki and R. Medzhitov, “Toll-like receptor control of the adaptive immune responses,” Nature Immunology, vol. 5, no. 10, pp. 987–995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Kadowaki, S. Ho, S. Antonenko et al., “Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 863–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. C. R. Sousa, “Toll-like receptors and dendritic cells: for whom the bug tolls,” Seminars in Immunology, vol. 16, no. 1, pp. 27–34, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Schmidt, B. Raghavan, V. Müller et al., “Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel,” Nature Immunology, vol. 11, no. 9, pp. 814–819, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Raghavan, S. F. Martin, P. R. Esser, M. Goebeler, and M. Schmidt, “Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2,” EMBO Reports, vol. 13, pp. 1109–1115, 2012.
  43. F. S. Sutterwala, Y. Ogura, M. Szczepanik et al., “Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1,” Immunity, vol. 24, no. 3, pp. 317–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Antonopoulos, M. Cumberbatch, R. J. Dearman, R. J. Daniel, I. Kimber, and R. W. Groves, “Functional caspase-1 is required for Langerhans cell migration and optimal contact sensitization in mice,” The Journal of Immunology, vol. 166, no. 6, pp. 3672–3677, 2001. View at Scopus
  45. F. C. Weber, P. R. Esser, T. Müller et al., “Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity,” Journal of Experimental Medicine, vol. 207, no. 12, pp. 2609–2619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Gallucci and P. Matzinger, “Danger signals: SOS to the immune system,” Current Opinion in Immunology, vol. 13, no. 1, pp. 114–119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. M. L. Kapsenberg, “Dendritic-cell control of pathogen-driven T-cell polarization,” Nature Reviews Immunology, vol. 3, no. 12, pp. 984–993, 2003. View at Scopus
  48. T. R. Mosmann, H. Cherwinski, and M. W. Bond, “Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,” The Journal of Immunology, vol. 136, no. 7, pp. 2348–2357, 1986. View at Scopus
  49. Y. Iwakura, H. Ishigame, S. Saijo, and S. Nakae, “Functional specialization of interleukin-17 family members,” Immunity, vol. 34, no. 2, pp. 149–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Ye, F. H. Rodriguez, S. Kanaly et al., “Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense,” Journal of Experimental Medicine, vol. 194, no. 4, pp. 519–527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Infante-Duarte, H. F. Horton, M. C. Byrne, and T. Kamradt, “Microbial lipopeptides induce the production of IL-17 in Th cells,” The Journal of Immunology, vol. 165, no. 11, pp. 6107–6115, 2000. View at Scopus
  52. W. Huang, L. Na, P. L. Fidel, and P. Schwarzenberger, “Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice,” Journal of Infectious Diseases, vol. 190, no. 3, pp. 624–631, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. D. J. Cua, J. Sherlock, Y. Chen et al., “Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain,” Nature, vol. 421, no. 6924, pp. 744–748, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Sato, A. Suematsu, K. Okamoto et al., “Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2673–2682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Yen, J. Cheung, H. Scheerens et al., “IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6,” The Journal of Clinical Investigation, vol. 116, no. 5, pp. 1310–1316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Hue, P. Ahern, S. Buonocore et al., “Interleukin-23 drives innate and T cell-mediated intestinal inflammation,” Journal of Experimental Medicine, vol. 203, no. 11, pp. 2473–2483, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Miossec, T. Korn, and V. K. Kuchroo, “Interleukin-17 and type 17 helper T cells,” The New England Journal of Medicine, vol. 361, no. 9, pp. 888–898, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Awasthi and V. K. Kuchroo, “Th17 cells: from precursors to players in inflammation and infection,” International Immunology, vol. 21, no. 5, pp. 489–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Yosef, A. K. Shalek, J. T. Gaublomme et al., “Dynamic regulatory network controlling TH17 cell differentiation,” Nature, vol. 496, pp. 461–468, 2013.
  60. N. Manel, D. Unutmaz, and D. R. Littman, “The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt,” Nature Immunology, vol. 9, no. 6, pp. 641–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Q. Crome, A. Y. Wang, C. Y. Kang, and M. K. Levings, “The role of retinoic acid-related orphan receptor variant 2 and IL-17 in the development and function of human CD4+ T cells,” European Journal of Immunology, vol. 39, no. 6, pp. 1480–1493, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Burgler, N. Ouaked, C. Bassin et al., “Differentiation and functional analysis of human TH17 cells,” Journal of Allergy and Clinical Immunology, vol. 123, no. 3, pp. 588.e7–595.e7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Cosmi, R. De Palma, V. Santarlasci et al., “Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1903–1916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. E. V. Acosta-Rodriguez, L. Rivino, J. Geginat et al., “Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells,” Nature Immunology, vol. 8, no. 6, pp. 639–646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. W. Sato, T. Aranami, and T. Yamamura, “Cutting edge: human Th17 cells are identified as bearing CCR2+CCR5 phenotype,” The Journal of Immunology, vol. 178, no. 12, pp. 7525–7529, 2007. View at Scopus
  66. N. Obermajer, J. L. Wong, R. P. Edwards et al., “Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling,” The Journal of Experimental Medicine, vol. 210, pp. 1433–1445, 2013.
  67. V. Santarlasci, L. Maggi, M. Capone et al., “Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion,” Immunity, vol. 36, no. 2, pp. 201–214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Eyerich, K. Eyerich, A. Cavani, and C. Schmidt-Weber, “IL-17 and IL-22: siblings, not twins,” Trends in Immunology, vol. 31, no. 9, pp. 354–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Aliahmadi, R. Gramlich, A. Grützkau et al., “TLR2-activated human langerhans cells promote Th17 polarization via IL-1β, TGF-β and IL-23,” European Journal of Immunology, vol. 39, no. 5, pp. 1221–1230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Eyerich, D. Pennino, C. Scarponi et al., “IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response,” Journal of Allergy and Clinical Immunology, vol. 123, no. 1, pp. 59.e4–66.e4, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Niebuhr, M. Gathmann, H. Scharonow et al., “Staphylococcal alpha-toxin is a strong inducer of interleukin-17 in humans,” Infection and Immunity, vol. 79, no. 4, pp. 1615–1622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Nakae, Y. Komiyama, A. Nambu et al., “Antigen-specific T cell sensitization is impaired in Il-17-deficient mice, causing suppression of allergic cellular and humoral responses,” Immunity, vol. 17, no. 3, pp. 375–387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. J. M. Larsen, C. M. Bonefeld, S. S. Poulsen, C. Geisler, and L. Skov, “IL-23 and TH17-mediated inflammation in human allergic contact dermatitis,” Journal of Allergy and Clinical Immunology, vol. 123, no. 2, pp. 486.e1–492.e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Cavani, D. Pennino, and K. Eyerich, “Th17 and Th22 in skin allergy,” Chemical Immunology and Allergy, vol. 96, pp. 39–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. D. Pennino, K. Eyerich, C. Scarponi et al., “IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes,” The Journal of Immunology, vol. 184, no. 9, pp. 4880–4888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Eyerich, K. Eyerich, D. Pennino et al., “Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling,” The Journal of Clinical Investigation, vol. 119, no. 12, pp. 3573–3585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Albanesi, A. Cavani, and G. Girolomoni, “IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-γ and TNF-α,” The Journal of Immunology, vol. 162, no. 1, pp. 494–502, 1999. View at Scopus
  78. S. Eyerich, A. T. Onken, S. Weidinger et al., “Mutual antagonism of T cells causing psoriasis and atopic eczema,” The New England Journal of Medicine, vol. 365, no. 3, pp. 231–238, 2011. View at Scopus
  79. Y. Zhao, A. Balato, R. Fishelevich, A. Chapoval, D. L. Mann, and A. A. Gaspari, “Th17/Tc17 infiltration and associated cytokine gene expression in elicitation phase of allergic contact dermatitis,” British Journal of Dermatology, vol. 161, no. 6, pp. 1301–1306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Yao, D. Sakata, Y. Esaki et al., “Prostaglandin E2-EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion,” Nature Medicine, vol. 15, no. 6, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. J. K. Choi, H. M. Oh, S. Lee et al., “Oleanolic acid acetate inhibits atopic dermatitis and allergic contact dermatitis in a murine model,” Toxicology and Applied Pharmacology, vol. 269, pp. 72–80, 2013.
  82. M. Laan, Z. Cui, H. Hoshino et al., “Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways,” The Journal of Immunology, vol. 162, no. 4, pp. 2347–2352, 1999. View at Scopus
  83. A. Bellini, M. A. Marini, L. Bianchetti, M. Barczyk, M. Schmidt, and S. Mattoli, “Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients,” Mucosal Immunology, vol. 5, no. 2, pp. 140–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. H. Yang, W. Song, J. A. Deane et al., “Deficiency of annexin A1 in CD4+ T cells exacerbates T cell-dependent inflammation,” The Journal of Immunology, vol. 190, pp. 997–1007, 2013.
  86. M. Anthoni, N. Fyhrquist-Vanni, H. Wolff, H. Alenius, and A. Lauerma, “Transforming growth factor-β/Smad3 signalling regulates inflammatory responses in a murine model of contact hypersensitivity,” British Journal of Dermatology, vol. 159, no. 3, pp. 546–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Martín, M. Gómez, A. Lamana et al., “The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity,” Journal of Allergy and Clinical Immunology, vol. 126, no. 2, pp. 355.e3–365.e3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Y. Park, D. Gupta, C. H. Kim, and R. Dziarski, “Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells,” PLoS ONE, vol. 6, no. 9, Article ID e24961, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. D. He, L. Wu, H. K. Kim, H. Li, C. A. Elmets, and H. Xu, “CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses,” The Journal of Immunology, vol. 177, no. 10, pp. 6852–6858, 2006. View at Scopus
  90. D. D. Kish, X. Li, and R. L. Fairchild, “CD8 T cells producing IL-17 and IFN-γ initiate the innate immune response required for responses to antigen skin challenge,” The Journal of Immunology, vol. 182, no. 10, pp. 5949–5959, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. D. D. Kish, N. Volokh, W. M. Baldwin III, and R. L. Fairchild, “Hapten application to the skin induces an inflammatory program directing hapten-primed effector CD8 T cell interaction with hapten-presenting endothelial cells,” The Journal of Immunology, vol. 186, no. 4, pp. 2117–2126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. D. D. Kish, A. V. Gorbachev, and R. L. Fairchild, “IL-1 receptor signaling is required at multiple stages of sensitization and elicitation of the contact hypersensitivity response,” The Journal of Immunology, vol. 188, no. 4, pp. 1761–1771, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Vocanson, A. Rozieres, A. Hennino et al., “Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells,” Journal of Allergy and Clinical Immunology, vol. 126, no. 2, pp. 280.e7–289.e7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Bour, E. Peyron, M. Gaucherand et al., “Major histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene,” European Journal of Immunology, vol. 25, no. 11, pp. 3006–3010, 1995. View at Publisher · View at Google Scholar · View at Scopus
  95. D. J. Cua and C. M. Tato, “Innate IL-17-producing cells: the sentinels of the immune system,” Nature Reviews Immunology, vol. 10, no. 7, pp. 479–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Fischer-Stabauer, A. Boehner, S. Eyerich et al., “Differential in situ expression of IL-17 in skin diseases,” European Journal of Dermatology, vol. 22, pp. 781–784, 2012.
  97. A. Nosbaum, A. Rozieres, B. Balme, C. Goujon, J. F. Nicolas, and F. Berard, “Blocking T helper 1/T helper 17 pathways has no effect on patch testing,” Contact Dermatitis, vol. 68, pp. 58–59, 2013.