About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 265608, 10 pages
http://dx.doi.org/10.1155/2013/265608
Review Article

Mesenchymal Stem Cells in Immune-Mediated Bone Marrow Failure Syndromes

Department of Haematology, University of Crete School of Medicine, 70013 Heraklion, Crete, Greece

Received 12 October 2013; Accepted 22 November 2013

Academic Editor: Senthamil R. Selvan

Copyright © 2013 Maria-Christina Kastrinaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Ellis and S. K. Nilsson, “The location and cellular composition of the hemopoietic stem cell niche,” Cytotherapy, vol. 14, no. 2, pp. 135–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Cook and P. Genever, “Regulation of mesenchymal stem cell differentiation,” Advances in Experimental Medicine and Biology, vol. 786, pp. 213–229, 2013. View at Publisher · View at Google Scholar
  3. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Pontikoglou, B. Delorme, and P. Charbord, “Human bone marrow native mesenchymal stem cells,” Regenerative Medicine, vol. 3, no. 5, pp. 731–741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. S. Frenette, S. Pinho, D. Lucas, et al., “Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine,” Annual Review of Immunology, vol. 31, pp. 285–316, 2013. View at Publisher · View at Google Scholar
  6. G. Thanabalasundaram, N. Arumalla, H. D. Tailor, and W. S. Khan, “Regulation of differentiation of mesenchymal stem cells into musculoskeletal cells,” Current Stem Cell Research and Therapy, vol. 7, no. 2, pp. 95–102, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Woodbury, E. J. Schwarz, D. J. Prockop, et al., “Adult rat and human bone marrow stromal cells differentiate into neurons,” Journal of Neuroscience Research, vol. 61, pp. 364–370, 2000.
  8. L. Zhang, J. S. Ye, V. Decot, et al., “Research on stem cells as candidates to be differentiated into hepatocytes,” Bio-Medical Materials and Engineering, vol. 22, pp. 105–111, 2012.
  9. A. J. Friedenstein, U. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976. View at Scopus
  10. G. T. Huang, S. Gronthos, and S. Shi, “Critical reviews in oral biology & medicine: mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in Regenerative Medicine,” Journal of Dental Research, vol. 88, no. 9, pp. 792–806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. S. Lin, G. Lin, and T. F. Lue, “Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants,” Stem Cells and Development, vol. 21, no. 15, pp. 2770–2778, 2012. View at Publisher · View at Google Scholar
  12. F. Sabatini, L. Petecchia, M. Tavian, V. J. De Villeroché, G. A. Rossi, and D. Brouty-Boyé, “Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities,” Laboratory Investigation, vol. 85, no. 8, pp. 962–971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Karahuseyinoglu, O. Cinar, E. Kilic et al., “Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys,” Stem Cells, vol. 25, no. 2, pp. 319–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. V. L. Battula, S. Treml, P. M. Bareiss et al., “Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1,” Haematologica, vol. 94, no. 2, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Hatzfeld, P. Eid, I. Peiffer et al., “A sub-population of high proliferative potential-quiescent human mesenchymal stem cells is under the reversible control of interferon α/β,” Leukemia, vol. 21, no. 4, pp. 714–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Sugiyama, H. Kohara, M. Noda, and T. Nagasawa, “Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches,” Immunity, vol. 25, no. 6, pp. 977–988, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. L. M. Calvi, G. B. Adams, K. W. Weibrecht et al., “Osteoblastic cells regulate the haematopoietic stem cell niche,” Nature, vol. 425, no. 6960, pp. 841–846, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Sacchetti, A. Funari, S. Michienzi et al., “Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment,” Cell, vol. 131, no. 2, pp. 324–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. R. Mayack and A. J. Wagers, “Osteolineage niche cells initiate hematopoietic stem cell mobilization,” Blood, vol. 112, no. 3, pp. 519–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. B. R. Chitteti, Y. Cheng, B. Poteat et al., “Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function,” Blood, vol. 115, no. 16, pp. 3239–3248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Naveiras, V. Nardi, P. L. Wenzel, P. V. Hauschka, F. Fahey, and G. Q. Daley, “Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment,” Nature, vol. 460, no. 7252, pp. 259–263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Omatsu, T. Sugiyama, H. Kohara et al., “The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche,” Immunity, vol. 33, no. 3, pp. 387–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. S. Tzeng, H. Li, Y. L. Kang, W. Chen, W. Cheng, and D. Lai, “Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression,” Blood, vol. 117, no. 2, pp. 429–439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Méndez-Ferrer, T. V. Michurina, F. Ferraro et al., “Mesenchymal and haematopoietic stem cells form a unique bone marrow niche,” Nature, vol. 466, no. 7308, pp. 829–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Sharma, F. Afrin, N. Satija, R. P. Tripathi, and G. U. Gangenahalli, “Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow,” Stem Cells and Development, vol. 20, no. 6, pp. 933–946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Chabanon, C. Desterke, E. Rodenburger et al., “A cross-talk between stromal cell-derived factor-1 and transforming growth factor-β controls the quiescence/cycling switch of CD34+ progenitors through FoxO3 and mammalian target of rapamycin,” Stem Cells, vol. 26, no. 12, pp. 3150–3161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Lataillade, D. Clay, C. Dupuy et al., “Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival,” Blood, vol. 95, no. 3, pp. 756–768, 2000. View at Scopus
  29. J. J. Lataillade, D. Clay, P. Bourin et al., “Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G0/G1 transition in CD34+ cells: evidence for an autocrine/paracrine mechanism,” Blood, vol. 99, no. 4, pp. 1117–1129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Flores-Figueroa, S. Varma, K. Montgomery, et al., “Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow,” Laboratory Investigation, vol. 92, pp. 1330–1341, 2012. View at Publisher · View at Google Scholar
  31. F. Dazzi, R. Ramasamy, S. Glennie, S. P. Jones, and I. Roberts, “The role of mesenchymal stem cells in haemopoiesis,” Blood Reviews, vol. 20, no. 3, pp. 161–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. C. Kemp, J. Hows, and C. Donaldson, “Bone marrow-derived mesenchymal stem cells,” Leukemia and Lymphoma, vol. 46, no. 11, pp. 1531–1544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. L. da Silva Meirelles, A. M. Fontes, D. T. Covas, and A. I. Caplan, “Mechanisms involved in the therapeutic properties of mesenchymal stem cells,” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 419–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. von Bahr, B. Sundberg, L. Lönnies et al., “Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy,” Biology of Blood and Marrow Transplantation, vol. 18, no. 4, pp. 557–564, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Di Nicola, C. Carlo-Stella, M. Magni et al., “Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli,” Blood, vol. 99, no. 10, pp. 3838–3843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Asari, S. Itakura, K. Ferreri et al., “Mesenchymal stem cells suppress B-cell terminal differentiation,” Experimental Hematology, vol. 37, no. 5, pp. 604–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Corcione, F. Benvenuto, E. Ferretti et al., “Human mesenchymal stem cells modulate B-cell functions,” Blood, vol. 107, no. 1, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. G. M. Spaggiari and L. Moretta, “Cellular and molecular interactions of mesenchymal stem cells in innate immunity,” Immunology & Cell Biology, vol. 91, pp. 27–31, 2013.
  39. P. Luz-Crawford, M. Kurte, J. Bravo-Alegria, et al., “Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells,” Stem Cell Research & Therapy, vol. 4, p. 65, 2013.
  40. D. Chabannes, M. Hill, E. Merieau et al., “A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells,” Blood, vol. 110, no. 10, pp. 3691–3694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. J. Jones, G. Brooke, K. Atkinson, and S. J. McTaggart, “Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells,” Placenta, vol. 28, no. 11-12, pp. 1174–1181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Sato, K. Ozaki, I. Oh et al., “Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells,” Blood, vol. 109, no. 1, pp. 228–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Selmani, A. Naji, I. Zidi et al., “Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells,” Stem Cells, vol. 26, no. 1, pp. 212–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. R. S. Waterman, S. L. Tomchuck, S. L. Henkle, and A. M. Betancourt, “A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype,” PLoS ONE, vol. 5, no. 4, Article ID e10088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. J. L. Chan, K. C. Tang, A. P. Patel et al., “Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ,” Blood, vol. 107, no. 12, pp. 4817–4824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Krampera, L. Cosmi, R. Angeli et al., “Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 386–398, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. J. Prasanna, D. Gopalakrishnan, S. R. Shankar, and A. B. Vasandan, “Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially,” PLoS ONE, vol. 5, no. 2, Article ID e9016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Campo, S. H. Swerdlow, N. L. Harris, S. Pileri, H. Stein, and E. S. Jaffe, “The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications,” Blood, vol. 117, no. 19, pp. 5019–5032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Greenberg, C. Cox, M. M. LeBeau et al., “International scoring system for evaluating prognosis in myelodysplastic syndromes,” Blood, vol. 89, no. 6, pp. 2079–2088, 1997. View at Scopus
  50. P. Beris and G. Georgiou, “Overview of myelodysplastic syndromes,” Seminars in Hematology, vol. 49, no. 4, pp. 287–294, 2012. View at Publisher · View at Google Scholar
  51. H. Khan, C. Vale, T. Bhagat, et al., “Role of DNA methylation in the pathogenesis and treatment of myelodysplastic syndromes,” Seminars in Hematology, vol. 50, no. 1, pp. 16–37, 2013. View at Publisher · View at Google Scholar
  52. S. D. Nimer, “Myelodysplastic syndromes,” Blood, vol. 111, no. 10, pp. 4841–4851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Nolte and W. Hofmann, “Myelodysplastic syndromes: molecular pathogenesis and genomic changes,” Annals of Hematology, vol. 87, no. 10, pp. 777–795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Tiu, L. Gondek, C. O'Keefe, and J. P. Maciejewski, “Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes,” Leukemia, vol. 21, no. 8, pp. 1648–1657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Fozza and M. Longinotti, “The role of T-cells in the pathogenesis of myelodysplastic syndromes: passengers and drivers,” Leukemia Research, vol. 37, no. 2, pp. 201–203, 2013. View at Publisher · View at Google Scholar
  56. S. Tauro, M. D. Hepburn, C. M. Peddie, D. T. Bowen, and M. J. Pippard, “Functional disturbance of marrow stromal microenvironment in the myelodysplastic syndromes,” Leukemia, vol. 16, no. 5, pp. 785–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Aizawa, M. Nakano, O. Iwase et al., “Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro,” Leukemia Research, vol. 23, no. 3, pp. 239–246, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. M. H. Raaijmakers, S. Mukherjee, S. Guo et al., “Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia,” Nature, vol. 464, no. 7290, pp. 852–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. C. R. Walkley, G. H. Olsen, S. Dworkin et al., “A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency,” Cell, vol. 129, no. 6, pp. 1097–1110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Flores-Figueroa, R. M. Arana-Trejo, G. Gutiérrez-Espíndola, A. Pérez-Cabrera, and H. Mayani, “Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization,” Leukemia Research, vol. 29, no. 2, pp. 215–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Flores-Figueroa, J. J. Montesinos, P. Flores-Guzmán et al., “Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells,” Leukemia Research, vol. 32, no. 9, pp. 1407–1416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Klaus, E. Stavroulaki, M. Kastrinaki et al., “Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes,” Stem Cells and Development, vol. 19, no. 7, pp. 1043–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Campioni, S. Moretti, L. Ferrari, M. Punturieri, G. L. Castoldi, and F. Lanza, “Immunophenotypic heterogeneity of bone marrow-derived mesenchymal stromal cells from patients with hematologic disorders: correlation with bone marrow microenvironment,” Haematologica, vol. 91, no. 3, pp. 364–368, 2006. View at Scopus
  64. D. Campioni, R. Rizzo, M. Stignani et al., “A decreased positivity for CD90 on human mesenchymal stromal cells (MSCs) is associated with a loss of immunosuppressive activity by MSCs,” Cytometry B, vol. 76, no. 3, pp. 225–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. O. Lopez-Villar, J. L. Garcia, F. M. Sanchez-Guijo et al., “Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome,” Leukemia, vol. 23, no. 4, pp. 664–672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Geyh, S. Oz, R. P. Cadeddu, et al., “Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells,” Leukemia, vol. 27, pp. 1841–1851, 2013. View at Publisher · View at Google Scholar
  67. Z. G. Zhao, W. Xu, H. P. Yu et al., “Functional characteristics of mesenchymal stem cells derived from bone marrow of patients with myelodysplastic syndromes,” Cancer Letters, vol. 317, no. 2, pp. 136–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. C. M. Aanei, F. Z. Eloae, P. Flandrin-Gresta et al., “Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells,” Experimental Cell Research, vol. 317, no. 18, pp. 2616–2629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. M. K. Yüksel, P. Topçuoǧlu, M. Kurdal, and O. Ilhan, “The clonogenic potential of hematopoietic stem cells and mesenchymal stromal cells in various hematologic diseases: a pilot study,” Cytotherapy, vol. 12, no. 1, pp. 38–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Varga, J. Kiss, J. Várkonyi et al., “Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplasia syndromes,” Pathology and Oncology Research, vol. 13, no. 4, pp. 311–319, 2007. View at Scopus
  71. C. M. Aanei, P. Flandrin, F. Z. Eloae, et al., “Intrinsic growth deficiencies of mesenchymal stromal cells in myelodysplastic syndromes,” Stem Cells and Development, vol. 21, no. 10, pp. 1604–1615, 2012. View at Publisher · View at Google Scholar
  72. Z. Zhao, Z. Wang, Q. Li, et al., “The different immunoregulatory functions of mesenchymal stem cells in patients with low-risk or high-risk myelodysplastic syndromes,” PLoS ONE, vol. 7, no. 9, Article ID e45675, 2012.
  73. A. M. Marcondes, S. Bair, P. S. Rabinovitch, T. Gooley, H. J. Deeg, and R. Risques, “No telomere shortening in marrow stroma from patients with MDS,” Annals of Hematology, vol. 88, no. 7, pp. 623–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Delorme, J. Ringe, C. Pontikoglou et al., “Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity,” Stem Cells, vol. 27, no. 5, pp. 1142–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Ramakrishnan, N. Awaya, E. Bryant, and B. Torok-Storb, “The stromal component of the marrow microenvironment is not derived from the malignant clone in MDS,” Blood, vol. 108, no. 2, pp. 772–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. V. Soenen-Cornu, C. Tourino, M. Bonnet et al., “Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro,” Oncogene, vol. 24, no. 15, pp. 2441–2448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. O. Blau, C. D. Baldus, W. Hofmann et al., “Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts,” Blood, vol. 118, no. 20, pp. 5583–5592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Blau, W. Hofmann, C. D. Baldus et al., “Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia,” Experimental Hematology, vol. 35, no. 2, pp. 221–229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. Q. Han, Z. Sun, L. Liu et al., “Impairment in immuno-modulatory function of Flk1+CD31-CD34- MSCs from MDS-RA patients,” Leukemia Research, vol. 31, no. 11, pp. 1469–1478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Wang, X. Tang, W. Xu, et al., “The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes,” PLoS ONE, vol. 8, no. 3, Article ID e57470, 2013.
  81. Z. Zhi-Gang, L. Wei-Ming, C. Zhi-Chao, Y. Yong, and Z. Ping, “Immunosuppressive properties of mesenchymal stem cells derived from bone marrow of patient with hematological malignant diseases,” Leukemia and Lymphoma, vol. 49, no. 11, pp. 2187–2195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Santamaria, S. Muntion, B. Roson, et al., “Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients,” Haematologica, vol. 97, no. 8, pp. 1218–1224, 2012. View at Publisher · View at Google Scholar
  83. E. C. Guinan, “Diagnosis and management of aplastic anemia,” Hematology, vol. 2011, pp. 76–81, 2011. View at Scopus
  84. J. P. Li, C. L. Zheng, and Z. C. Han, “Abnormal immunity and stem/progenitor cells in acquired aplastic anemia,” Critical Reviews in Oncology/Hematology, vol. 75, no. 2, pp. 79–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. N. C. Giannakoulas, M. Karakantza, G. L. Theodorou et al., “Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients,” British Journal of Haematology, vol. 124, no. 1, pp. 97–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Kook, W. Zeng, C. Guibin, M. Kirby, N. S. Young, and J. P. Maciejewski, “Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia,” Experimental Hematology, vol. 29, no. 11, pp. 1270–1277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Zonghong, T. Meifeng, W. Huaquan et al., “Circulating myeloid dendritic cells are increased in individuals with severe aplastic anemia,” International Journal of Hematology, vol. 93, no. 2, pp. 156–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. E. E. Solomou, K. Rezvani, S. Mielke et al., “Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia,” Blood, vol. 110, no. 5, pp. 1603–1606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Dubey, P. Shukla, and S. Nityanand, “Expression of interferon-γ and tumor necrosis factor-α in bone marrow T cells and their levels in bone marrow plasma in patients with aplastic anemia,” Annals of Hematology, vol. 84, no. 9, pp. 572–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Sloand, S. Kim, J. P. Maciejewski, J. Tisdale, D. Follmann, and N. S. Young, “Intracellular interferon-γ in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia,” Blood, vol. 100, no. 4, pp. 1185–1191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Zeng, A. Miyazato, G. Chen, S. Kajigaya, N. S. Young, and J. P. Maciejewski, “Interferon-γ-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles,” Blood, vol. 107, no. 1, pp. 167–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. N. C. Zoumbos, P. Gascon, J. Y. Djeu, and N. S. Young, “Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 1, pp. 188–192, 1985. View at Scopus
  93. S. Rizzo, J. Scopes, M. O. Elebute, H. A. Papadaki, E. C. Gordon-Smith, and F. M. Gibson, “Stem cell defect in aplastic anemia: reduced long term culture-initiating cells (LTC-IC) in CD34+ cells isolated from aplastic anemia patient bone marrow,” Hematology Journal, vol. 3, no. 5, pp. 230–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. W. H. Matsui, R. A. Brodsky, B. D. Smith, M. J. Borowitz, and R. J. Jones, “Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes,” Leukemia, vol. 20, no. 3, pp. 458–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Scopes, M. Bagnara, E. C. Gordon-Smith, S. E. Ball, and F. M. Gibson, “Haemopoietic progenitor cells are reduced in aplastic anaemia,” British Journal of Haematology, vol. 86, no. 2, pp. 427–430, 1994. View at Scopus
  96. F. Timeus, N. Crescenzio, A. Doria et al., “Flow cytometric evaluation of circulating CD34+ cell counts and apoptotic rate in children with acquired aplastic anemia and myelodysplasia,” Experimental Hematology, vol. 33, no. 5, pp. 597–604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. S. B. Killick, C. V. Cox, J. C. W. Marsh, E. C. Gordon-Smith, and F. M. Gibson, “Mechanisms of bone marrow progenitor cell apoptosis in aplastic anaemia and the effect of anti-thymocyte globulin: examination of the role of the Fas-Fas-L interaction,” British Journal of Haematology, vol. 111, no. 4, pp. 1164–1169, 2000. View at Publisher · View at Google Scholar · View at Scopus
  98. A. M. Risitano, H. Kook, W. Zeng, G. Chen, N. S. Young, and J. P. Maciejewski, “Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by Vβ CDR3 spectratyping and flow cytometry,” Blood, vol. 100, no. 1, pp. 178–183, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Zeng, J. P. Maciejewski, G. Chen, and N. S. Young, “Limited heterogeneity of T cell receptor BV usage in aplastic anemia,” Journal of Clinical Investigation, vol. 108, no. 5, pp. 765–773, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. N. C. Zoumbos, P. Gascon, and J. Y. Djeu, “Circulating activated suppressor T lymphocytes in aplastic anemia,” New England Journal of Medicine, vol. 312, no. 5, pp. 257–265, 1985. View at Scopus
  101. A. Luther-Wyrsch, C. Nissen, and A. Wodnar-Filipowicz, “Intracellular Fas ligand is elevated in T lymphocytes in severe aplastic anaemia,” British Journal of Haematology, vol. 114, no. 4, pp. 884–890, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. J. P. Maciejewski, C. Selleri, T. Sato, S. Anderson, and N. S. Young, “Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia,” British Journal of Haematology, vol. 91, no. 1, pp. 245–252, 1995. View at Scopus
  103. A. Bacigalupo, M. Valle, M. Podestà et al., “T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia,” Experimental Hematology, vol. 33, no. 7, pp. 819–827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Xu, Y. Takahashi, Y. Wang et al., “Downregulation of GATA-2 and overexpression of adipogenic gene-PPARγ in mesenchymal stem cells from patients with aplastic anemia,” Experimental Hematology, vol. 37, no. 12, pp. 1393–1399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Li, S. Yang, S. Lu, et al., “Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia,” PLoS ONE, vol. 7, no. 11, Article ID e47764, 2012.
  106. Y. Chao, C. Peng, H. Harn, C. Chan, and K. Wu, “Poor potential of proliferation and differentiation in bone marrow mesenchymal stem cells derived from children with severe aplastic anemia,” Annals of Hematology, vol. 89, no. 7, pp. 715–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. I. N. Shipounova, T. V. Petrova, D. A. Svinareva, K. S. Momotuk, E. A. Mikhailova, and N. I. Drize, “Alterations in hematopoietic microenvironment in patients with aplastic anemia,” Clinical and Translational Science, vol. 2, no. 1, pp. 67–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. Xu, Y. Takahashi, A. Yoshimi, M. Tanaka, H. Yagasaki, and S. Kojima, “Immunosuppressive activity of mesenchymal stem cells is not decreased in children with aplastic anemia,” International Journal of Hematology, vol. 89, no. 1, pp. 126–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. H. A. Papadaki, J. Palmblad, and G. D. Eliopoulos, “Non-immune chronic idiopathic neutropenia of adult: an overview,” European Journal of Haematology, vol. 67, no. 1, pp. 35–44, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. H. A. Papadaki, A. G. Eliopoulos, T. Kosteas et al., “Impaired granulocytopoiesis in patients with chronic idiopathic neutropenia is associated with increased apoptosis of bone marrow myeloid progenitor cells,” Blood, vol. 101, no. 7, pp. 2591–2600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. E. Stavroulaki, M. Kastrinaki, C. Pontikoglou et al., “Mesenchymal stem cells contribute to the abnormal bone marrow microenvironment in patients with chronic idiopathic neutropenia by overproduction of transforming growth factor-β1,” Stem Cells and Development, vol. 20, no. 8, pp. 1309–1318, 2011. View at Publisher · View at Google Scholar · View at Scopus