About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 268065, 8 pages
http://dx.doi.org/10.1155/2013/268065
Research Article

Baicalin Inhibits IL-17-Mediated Joint Inflammation in Murine Adjuvant-Induced Arthritis

Xue Yang,1,2 Ji Yang,3 and Hejian Zou1,2

1Division of Rheumatology, Huashan Hospital, Fudan University, 12 Wulumuqizhong Road, Shanghai 200040, China
2Institute of Rheumatology, Immunology and Allergy, Shanghai Medical College, Fudan University, Huashan Hospital, Shanghai 200040, China
3Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Received 14 March 2013; Revised 22 May 2013; Accepted 22 May 2013

Academic Editor: Hiroshi Nakajima

Copyright © 2013 Xue Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Klareskog, A. I. Catrina, and S. Paget, “Rheumatoid arthritis,” The Lancet, vol. 373, no. 9664, pp. 659–672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. I. B. McInnes and G. Schett, “Cytokines in the pathogenesis of rheumatoid arthritis,” Nature Reviews Immunology, vol. 7, no. 6, pp. 429–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Xuzhu, M. Komai-Koma, B. P. Leung et al., “Resveratrol modulates murine collagen-induced arthritis by inhibiting Th17 and B-cell function,” Annals of the Rheumatic Diseases, vol. 71, no. 1, pp. 129–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kim, M. Cho, M. Park et al., “Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis,” Arthritis Research & Therapy, vol. 7, no. 1, pp. R139–R148, 2005. View at Scopus
  5. M. Chabaud, J. M. . Durand, N. Buchs et al., “Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium,” Arthritis & Rheumatism, vol. 42, pp. 963–970, 1999.
  6. N. Simpson, P. A. Gatenby, A. Wilson et al., “Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 234–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ziolkowska, A. Koc, G. Luszczykiewicz et al., “High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism,” Journal of Immunology, vol. 164, no. 5, pp. 2832–2838, 2000. View at Scopus
  8. L. E. Harrington, R. D. Hatton, P. R. Mangan et al., “Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages,” Nature Immunology, vol. 6, no. 11, pp. 1123–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Park, Z. Li, X. O. Yang et al., “A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17,” Nature Immunology, vol. 6, no. 11, pp. 1133–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Agarwal, R. Misra, and A. Aggarwal, “Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases,” Journal of Rheumatology, vol. 35, no. 3, pp. 515–519, 2008. View at Scopus
  12. S. Shahrara, S. R. Pickens, A. M. Mandelin II et al., “IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction,” Journal of Immunology, vol. 184, no. 8, pp. 4479–4487, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Lin and D. Shieh, “The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin,” American Journal of Chinese Medicine, vol. 24, no. 1, pp. 31–36, 1996. View at Scopus
  14. B. Q. Li, T. Fu, W. Gong et al., “The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines,” Immunopharmacology, vol. 49, no. 3, pp. 295–306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Yang, X. Yang, Y. Chu, and M. Li, “Identification of Baicalin as an immunoregulatory compound by controlling TH17 cell differentiation,” PLoS ONE, vol. 6, no. 2, Article ID e17164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Lider, N. Karin, M. Shinitzky, and I. R. Cohen, “Therapeutic vaccination against adjuvant arthritis using autoimmune T cells treated with hydrostatic pressure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 13, pp. 4577–4580, 1987. View at Scopus
  17. S. M. Nanjundaiah, J. P. Stains, and K. D. Moudgil, “Kinetics and interplay of mediators of inflammation-induced bone damage in the course of adjuvant arthritis,” International Journal of Immunopathology and Pharmacology, vol. 26, pp. 37–48, 2013.
  18. M. L. Watson, J. K. Rao, G. S. Gilkeson et al., “Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease-modifying loci,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1645–1656, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Niki, H. Yamada, T. Kikuchi et al., “Membrane-associated IL-1 contributes to chronic synovitis and cartilage destruction in human IL-1α transgenic mice,” Journal of Immunology, vol. 172, no. 1, pp. 577–584, 2004. View at Scopus
  20. P. Ye, F. H. Rodriguez, S. Kanaly et al., “Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense,” Journal of Experimental Medicine, vol. 194, no. 4, pp. 519–527, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. I. I. Ivanov, B. S. McKenzie, L. Zhou et al., “The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells,” Cell, vol. 126, no. 6, pp. 1121–1133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Zhou, Y. F. Wong, J. Wang, X. Cai, and L. Liu, “Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats,” Biochemical and Biophysical Research Communications, vol. 376, no. 2, pp. 352–357, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Wan, X. Gong, L. Zhang, H. Li, Y. Zhou, and Q. Zhou, “Protective effect of baicalin against Lipopolysaccharide/d-galactosamine-induced liver injury in mice by up-regulation of Heme oxygenase-1,” European Journal of Pharmacology, vol. 587, no. 1–3, pp. 302–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zeng, C. Song, X. Ding, X. Ji, L. Yi, and K. Zhu, “Baicalin reduces the severity of experimental autoimmune encephalomyelitis,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 7, pp. 1003–1010, 2007. View at Scopus
  25. J. Yang, X. Yang, and M. Li:, “Baicalin, a natural compound, promotes regulatory T cell differentiation,” BMC Complementary and Alternative Medicine, vol. 12, article 64, 2012.
  26. L. Liu, L. Gong, H. Wang et al., “Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock,” Biochemical Pharmacology, vol. 75, no. 4, pp. 914–922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Zhu, Q. Liu, M. Wang et al., “Activation of Sirt1 by resveratrol inhibits TNF-α induced inflammation in fibroblasts,” PloS one, vol. 6, no. 11, p. e27081, 2011. View at Scopus
  28. J. Yang, X. Yang, H. Zou, Y. Chu, and M. Li, “Recovery of the immune balance between Th17 and regulatory T cells as a treatment for systemic lupus erythematosus,” Rheumatology, vol. 50, no. 8, pp. 1366–1372, 2011. View at Scopus
  29. J. Yang, Y. Chu, X. Yang et al., “Th17 and natural treg cell population dynamics in systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 60, no. 5, pp. 1472–1483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Kong, Q. Lan, M. Chen, et al., “Antigen-specific transforming growth factor beta-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance,” Arthritis & Rheumatism, vol. 64, pp. 2548–2558, 2012.
  31. T. Krakauer, B. Q. Li, and H. A. Young, “The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines,” FEBS Letters, vol. 500, no. 1-2, pp. 52–55, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Liu, Z. Ma, H. Cai, Q. Li, W. Rong, and M. Kawano, “Inhibitory effect of baicalein on IL-6-mediated signaling cascades in human myeloma cells,” European Journal of Haematology, vol. 84, no. 2, pp. 137–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Monte, C. Wilson, and F. F. Shih, “Increased number and function of FoxP3 regulatory T cells during experimental arthritis,” Arthritis and Rheumatism, vol. 58, no. 12, pp. 3730–3741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Yang, J. Yang, Y. Chu et al., “T follicular helper cells mediate expansion of regulatory B cells via IL-21 in lupus-prone MRL/lpr mice,” PLoS One, vol. 8, Article ID e62855, 2013.