About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 281958, 14 pages
http://dx.doi.org/10.1155/2013/281958
Review Article

The Impact of the Myeloid Response to Radiation Therapy

1Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan, Portland, OR 97213, USA
2The Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
3The Oregon Clinic, Portland, OR 97213, USA

Received 31 January 2013; Revised 15 March 2013; Accepted 20 March 2013

Academic Editor: Luca Gattinoni

Copyright © 2013 Michael J. Gough et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Finak, N. Bertos, F. Pepin et al., “Stromal gene expression predicts clinical outcome in breast cancer,” Nature Medicine, vol. 14, no. 5, pp. 518–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Crittenden, B. Cottam, T. Savage, C. Nguyen, P. Newell, and M. J. Gough, “Expression of NF-κb p50 in tumor stroma limits the control of tumors by radiation therapy,” PLoS One, vol. 7, no. 6, Article ID e39295, 2012. View at Publisher · View at Google Scholar
  3. J. M. Brown, M. Diehn, and B. W. Loo, “Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 2, pp. 323–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. B. Marks, X. Yu, Z. Vujaskovic, W. Small, R. Folz, and M. S. Anscher, “Radiation-induced lung injury,” Seminars in Radiation Oncology, vol. 13, no. 3, pp. 333–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Mah, J. Van Dyk, T. Keane, and P. Y. Poon, “Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 13, no. 2, pp. 179–188, 1987. View at Scopus
  6. J. J. Kim and I. F. Tannock, “Repopulation of cancer cells during therapy: an important cause of treatment failure,” Nature Reviews Cancer, vol. 5, no. 7, pp. 516–525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  8. J. M. Adams and S. Cory, “The Bcl-2 apoptotic switch in cancer development and therapy,” Oncogene, vol. 26, no. 9, pp. 1324–1337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Oltersdorf, S. W. Elmore, A. R. Shoemaker et al., “An inhibitor of Bcl-2 family proteins induces regression of solid tumours,” Nature, vol. 435, no. 7042, pp. 677–681, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Melcher, S. Todryk, N. Hardwick, M. Ford, M. Jacobson, and R. G. Vile, “Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression,” Nature Medicine, vol. 4, no. 5, pp. 581–587, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Melcher, M. Gough, S. Todryk, and R. Vile, “Apoptosis or necrosis for tumor immunotherapy: what's in a name?” Journal of Molecular Medicine, vol. 77, no. 12, pp. 824–833, 1999. View at Scopus
  12. M. J. Gough, A. A. Melcher, A. Ahmed et al., “Macrophages orchestrate the immune response to tumor cell death,” Cancer Research, vol. 61, no. 19, pp. 7240–7247, 2001. View at Scopus
  13. S. Todryk, A. A. Melcher, N. Hardwick et al., “Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake,” Journal of Immunology, vol. 163, no. 3, pp. 1398–1408, 1999. View at Scopus
  14. J. I. Johnson, S. Decker, D. Zaharevitz et al., “Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials,” British Journal of Cancer, vol. 84, no. 10, pp. 1424–1431, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. DeNardo, J. B. Barreto, P. Andreu et al., “CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages,” Cancer Cell, vol. 16, no. 2, pp. 91–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Gough and M. R. Crittenden, “Immune system plays an important role in the success and failure of conventional cancer therapy,” Immunotherapy, vol. 4, no. 2, pp. 125–128, 2012. View at Publisher · View at Google Scholar
  17. Y. Lee, S. L. Auh, Y. Wang et al., “Therapeutic effects of ablative radiation on local tumor require CD8 + T cells: changing strategies for cancer treatment,” Blood, vol. 114, no. 3, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Gough, M. R. Crittenden, M. Sarff et al., “Adjuvant therapy with agonistic antibodies to CD134 (OX40) increases local control after surgical or radiation therapy of cancer in mice,” Journal of Immunotherapy, vol. 33, no. 8, pp. 798–809, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Q. Huang, F. Li, X. Liu et al., “Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy,” Nature Medicine, vol. 17, no. 7, pp. 860–866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Ludgate, “Optimizing cancer treatments to induce an acute immune response, radiation abscopal effects, PAMPS and DAMPS,” Clinical Cancer Research, vol. 18, no. 17, pp. 4522–4525, 2012. View at Publisher · View at Google Scholar
  21. C. C. Stewart and C. A. Perez, “Effect of irradiation on immune responses,” Radiology, vol. 118, no. 1, pp. 201–210, 1976. View at Scopus
  22. E. M. Rosen, S. Fan, S. Rockwell, and I. D. Goldberg, “The molecular and cellular basis of radiosensitivity: implications for understanding how normal tissues and tumors respond to therapeutic radiation,” Cancer Investigation, vol. 17, no. 1, pp. 56–72, 1999. View at Scopus
  23. A. Balogh, E. Persa, E. N. Bogdándi et al., “The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells,” Inflammation Research, vol. 62, no. 2, pp. 201–212, 2013. View at Publisher · View at Google Scholar
  24. D. G. DeNardo, D. J. Brennan, E. Rexhepaj et al., “Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy,” Cancer Discovery, vol. 1, no. 1, pp. 54–67, 2011. View at Publisher · View at Google Scholar
  25. G. O. Ahn, D. Tseng, C. H. Liao, M. J. Dorie, A. Czechowicz, and J. M. Brown, “Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8363–8368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Crittenden, B. Cottam, T. Savage, C. Nguyen, P. Newell, and M. J. Gough, “Expression of NF-kappaB p50 in tumor stroma limits the control of tumors by radiation therapy,” PLoS One, vol. 7, no. 6, Article ID e39295, 2012.
  27. M. Garcia-Barros, F. Paris, C. Cordon-Cardo et al., “Tumor response to radiotherapy regulated by endothelial cell apoptosis,” Science, vol. 300, no. 5622, pp. 1155–1159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Paris, Z. Fuks, A. Kang et al., “Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice,” Science, vol. 293, no. 5528, pp. 293–297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. E. A. Reits, J. W. Hodge, C. A. Herberts et al., “Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1259–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. E. Finkelstein, R. Timmerman, W. H. McBride et al., “The confluence of stereotactic ablative radiotherapy and tumor immunology,” Clinical and Developmental Immunology, vol. 2011, Article ID 439752, 7 pages, 2011. View at Publisher · View at Google Scholar
  31. H. F. Dvorak, “Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing,” The New England Journal of Medicine, vol. 315, no. 26, pp. 1650–1659, 1986. View at Scopus
  32. M. A. Troester, M. H. Lee, M. Carter et al., “Activation of host wound responses in breast cancer microenvironment,” Clinical Cancer Research, vol. 15, no. 22, pp. 7020–7028, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Hansen, D. A. Grabau, F. B. Sørensen, M. Bak, W. Vach, and C. Rose, “The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients,” Clinical Cancer Research, vol. 6, no. 1, pp. 139–146, 2000. View at Scopus
  34. T. Hasebe, S. Sasaki, S. Imoto, K. Mukai, T. Yokose, and A. Ochiai, “Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study,” Modern Pathology, vol. 15, no. 5, pp. 502–516, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. D. S. A. Nuyten, B. Kreike, A. A. M. Hart et al., “Predicting a local recurrence after breast-conserving therapy by gene expression profiling,” Breast Cancer Research, vol. 8, no. 5, article no. R62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. G. J. Van Der Bij, S. J. Oosterling, R. H. J. Beelen, S. Meijer, J. C. Coffey, and M. Van Egmond, “The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer,” Annals of Surgery, vol. 249, no. 5, pp. 727–734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Friess, P. Malfertheiner, R. Isenmann, H. Kühne, H. G. Beger, and M. W. Büchler, “The risk of pancreaticointestinal anastomosis can be predicted preoperatively,” Pancreas, vol. 13, no. 2, pp. 202–208, 1996. View at Scopus
  38. H. Kurahara, H. Shinchi, Y. Mataki et al., “Significance of M2-polarized tumor-associated macrophage in pancreatic cancer,” Journal of Surgical Research, vol. 167, no. 2, pp. e211–e219, 2011. View at Publisher · View at Google Scholar
  39. M. K. Tibbs, “Wound healing following radiation therapy: a review,” Radiotherapy and Oncology, vol. 42, no. 2, pp. 99–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. S. H. Abid, V. Malhotra, and M. C. Perry, “Radiation-induced and chemotherapy-induced pulmonary injury,” Current Opinion in Oncology, vol. 13, no. 4, pp. 242–248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. L. J. Wesselius, “Pulmonary complications of cancer therapy,” Comprehensive Therapy, vol. 25, no. 5, pp. 272–277, 1999. View at Scopus
  42. T. A. Wynn, “Integrating mechanisms of pulmonary fibrosis,” Journal of Experimental Medicine, vol. 208, no. 7, pp. 1339–1350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. S. Duffield, S. J. Forbes, C. M. Constandinou et al., “Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair,” Journal of Clinical Investigation, vol. 115, no. 1, pp. 56–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Lucas, A. Waisman, R. Ranjan et al., “Differential roles of macrophages in diverse phases of skin repair,” Journal of Immunology, vol. 184, no. 7, pp. 3964–3977, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Rubin, C. J. Johnston, J. P. Williams, S. McDonald, and J. N. Finkelstein, “A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis,” International Journal of Radiation Oncology Biology Physics, vol. 33, no. 1, pp. 99–109, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Rubin, J. Finkelstein, and D. Shapiro, “Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast,” International Journal of Radiation Oncology Biology Physics, vol. 23, no. 7, pp. 93–101, 1992. View at Scopus
  47. D. E. Hallahan, D. R. Spriggs, M. A. Beckett, D. W. Kufe, and R. R. Weichselbaum, “Increased tumor necrosis factor α mRNA after cellular exposure to ionizing radiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 24, pp. 10104–10107, 1989. View at Publisher · View at Google Scholar · View at Scopus
  48. R. R. Weichselbaum, D. Hallahan, Z. Fuks, and D. Kufe, “Radiation induction of immediate early genes: effectors of the radiation-stress response,” International Journal of Radiation Oncology Biology Physics, vol. 30, no. 1, pp. 229–234, 1994. View at Scopus
  49. M. S. Anscher, T. Murase, D. M. Prescott et al., “Changes in plasma TGFβ levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis,” International Journal of Radiation Oncology Biology Physics, vol. 30, no. 3, pp. 671–676, 1994. View at Scopus
  50. M. S. Anscher, F. M. Kong, L. B. Marks, G. C. Bentel, and R. L. Jirtle, “Changes in plasma transforming growth factor beta during radiotherapy and the risk of symptomatic radiation-induced pneumonitis,” International Journal of Radiation Oncology Biology Physics, vol. 37, no. 2, pp. 253–258, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. Z. Haiping, K. Takayama, J. Uchino et al., “Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-β type II receptor gene,” Cancer Gene Therapy, vol. 13, no. 9, pp. 864–872, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Nishioka, Y. Ogawa, T. Mima et al., “Histopathologic amelioration of fibroproliferative change in rat irradiated lung using soluble transforming growth factor-beta (TGF-β) receptor mediated by adenoviral vector,” International Journal of Radiation Oncology Biology Physics, vol. 58, no. 4, pp. 1235–1241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. M. S. Anscher, B. Thrasher, L. Zgonjanin et al., “Small molecular inhibitor of transforming growth factor-ß protects against development of radiation-induced lung injury,” International Journal of Radiation Oncology Biology Physics, vol. 71, no. 3, pp. 829–837, 2008. View at Publisher · View at Google Scholar
  54. J. Alsner, C. N. Andreassen, and J. Overgaard, “Genetic markers for prediction of normal tissue toxicity after radiotherapy,” Seminars in Radiation Oncology, vol. 18, no. 2, pp. 126–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. S. Lee, D. Gu, L. Feng et al., “Accumulation of extracellular matrix and developmental dysregulation in the pancreas by transgenic production of transforming growth factor-β1,” American Journal of Pathology, vol. 147, no. 1, pp. 42–52, 1995. View at Scopus
  56. F. Sanvito, A. Nichols, P. L. Herrera et al., “TGF-β1 overexpression in murine pancreas induces chronic pancreatitis and, together with TNF-α, triggers insulin-dependent diabetes,” Biochemical and Biophysical Research Communications, vol. 217, no. 3, pp. 1279–1286, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Lawrence, D. A. Willoughby, and D. W. Gilroy, “Anti-inflammatory lipid mediators and insights into the resolution of inflammation,” Nature Reviews Immunology, vol. 2, no. 10, pp. 787–795, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. C. N. Serhan and J. Savill, “Resolution of inflammation: the beginning programs the end,” Nature Immunology, vol. 6, no. 12, pp. 1191–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. C. K. Haston, M. Begin, G. Dorion, and S. M. Cory, “Distinct loci influence radiation-induced alveolitis from fibrosing alveolitis in the mouse,” Cancer Research, vol. 67, no. 22, pp. 10796–10803, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson, “Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF,” Journal of Clinical Investigation, vol. 101, no. 4, pp. 890–898, 1998. View at Scopus
  61. M. L. N. Huynh, V. A. Fadok, and P. M. Henson, “Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation,” Journal of Clinical Investigation, vol. 109, no. 1, pp. 41–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Oakley, J. Mann, S. Nailard et al., “Nuclear factor-κB1 (p50) limits the inflammatory and fibrogenic responses to chronic injury,” American Journal of Pathology, vol. 166, no. 3, pp. 695–708, 2005. View at Scopus
  63. S. V. Kozin, W. S. Kamoun, Y. Huang, M. R. Dawson, R. K. Jain, and D. G. Duda, “Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation,” Cancer Research, vol. 70, no. 14, pp. 5679–5685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Lauber, A. Ernst, M. Orth, M. Herrmann, and C. Belka, “Dying cell clearance and its impact on the outcome of tumor radiotherapy,” Frontiers in Oncology, vol. 2, article 116, 2012. View at Publisher · View at Google Scholar
  65. M. P. Chao, S. Jaiswal, R. Weissman-Tsukamoto et al., “Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47,” Science Translational Medicine, vol. 2, p. 63ra94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. J. B. Maxhimer, D. R. Soto-Pantoja, L. A. Ridnour et al., “Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling,” Science translational medicine, vol. 1, no. 3, p. 3ra7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. C. A. Perez, A. Fu, H. Onishko, D. E. Hallahan, and L. Geng, “Radiation induces an antitumour immune response to mouse melanoma,” International Journal of Radiation Biology, vol. 85, no. 12, pp. 1126–1136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Obeid, T. Panaretakis, N. Joza et al., “Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis,” Cell Death and Differentiation, vol. 14, no. 10, pp. 1848–1850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. C. A. Ogden, A. DeCathelineau, P. R. Hoffmann et al., “C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 781–795, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. R. Hanayama, M. Tanaka, K. Miyasaka et al., “Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice,” Science, vol. 304, no. 5674, pp. 1147–1150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Peng and K. B. Elkon, “Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2221–2241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. R. S. Scott, E. J. McMahon, S. M. Pop et al., “Phagocytosis and clearance of apoptotic cells is mediated by MER,” Nature, vol. 411, no. 6834, pp. 207–211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. M. D. Galvan, D. B. Foreman, E. Zeng, J. C. Tan, and S. S. Bohlson, “Complement component C1q regulates macrophage expression of Mer tyrosine kinase to promote clearance of apoptotic cells,” Journal of Immunology, vol. 188, no. 8, pp. 3716–3723, 2012. View at Publisher · View at Google Scholar
  74. G. Zizzo, B. A. Hilliard, M. Monestier, and P. L. Cohen, “Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction,” Journal of Immunology, vol. 189, no. 7, pp. 3508–3520, 2012. View at Publisher · View at Google Scholar
  75. P. L. Cohen, R. Caricchio, V. Abraham et al., “Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase,” Journal of Experimental Medicine, vol. 196, no. 1, pp. 135–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. M. A. Wallet, P. Sen, R. R. Flores et al., “MerTK is required for apoptotic cell-induced T cell tolerance,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 219–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. G. A. Daniels, L. Sanchez-Perez, R. M. Diaz et al., “A simple method to cure established tumors by inflammatory killing of normal cells,” Nature Biotechnology, vol. 22, no. 9, pp. 1125–1132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. T. E. Bucknall, “The effect of local infection upon wound healing: an experimental study,” British Journal of Surgery, vol. 67, no. 12, pp. 851–855, 1980. View at Scopus
  79. K. Ishimura, A. Moroguchi, K. Okano, T. Maeba, and H. Maeta, “Local expression of tumor necrosis factor-α and interleukin-10 on wound healing of intestinal anastomosis during endotoxemia in mice,” Journal of Surgical Research, vol. 108, no. 1, pp. 91–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Touchefeu, G. Vassaux, and K. J. Harrington, “Oncolytic viruses in radiation oncology,” Radiotherapy and Oncology, vol. 99, no. 3, pp. 262–270, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. K. J. Harrington, E. M. Karapanagiotou, V. Roulstone et al., “Two-stage phase I dose-escalation study of intratumoral reovirus type 3 dearing and palliative radiotherapy in patients with advanced cancers,” Clinical Cancer Research, vol. 16, no. 11, pp. 3067–3077, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Milas, K. A. Mason, H. Ariga et al., “CpG oligodeoxynucleotide enhances tumor response to radiation,” Cancer Research, vol. 64, no. 15, pp. 5074–5077, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. R. E. Roses, M. Xu, G. K. Koski, and B. J. Czerniecki, “Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer,” Oncogene, vol. 27, no. 2, pp. 200–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Zhang, N. A. Bowerman, J. K. Salama et al., “Induced sensitization of tumor stroma leads to eradication of established cancer by T cells,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 49–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. A. O'Garra, F. J. Barrat, A. G. Castro, A. Vicari, and C. Hawrylowicz, “Strategies for use of IL-10 or its antagonists in human disease,” Immunological Reviews, vol. 223, no. 1, pp. 114–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. J. Gough and A. D. Weinberg, “OX40 (CD134) and OX40L,” Advances in Experimental Medicine and Biology, vol. 647, pp. 94–107, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. A. P. Vicari, C. Chiodoni, C. Vaure et al., “Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody,” Journal of Experimental Medicine, vol. 196, no. 4, pp. 541–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. A. D. Weinberg, M. M. Rivera, R. Prell et al., “Engagement of the OX-40 receptor in vivo enhances antitumor immunity,” Journal of Immunology, vol. 164, no. 4, pp. 2160–2169, 2000. View at Scopus
  89. L. Martinez-Pomares and S. Gordon, “CD169+ macrophages at the crossroads of antigen presentation,” Trends in Immunology, vol. 33, no. 2, pp. 66–70, 2012. View at Publisher · View at Google Scholar
  90. E. J. Fu, M. J. Arca, J. M. Hain et al., “Tumor-induced suppression of antitumor reactivity and depression of TCRζ expression in tumor-draining lymph node lymphocytes: possible relationship to the Th2 pathway,” Journal of Immunotherapy, vol. 20, no. 2, pp. 111–122, 1997. View at Scopus
  91. J. R. Ohlfest, B. M. Andersen, A. J. Litterman et al., “Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model,” Journal of Immunology, vol. 190, no. 2, pp. 613–620, 2013. View at Publisher · View at Google Scholar
  92. A. J. Cochran, D. L. Morton, S. Stern, A. M. A. Lana, R. Essner, and D. R. Wen, “Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: implications for tumor biology and treatment,” Modern Pathology, vol. 14, no. 6, pp. 604–608, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Boucher, M. Leunig, and R. K. Jain, “Tumor angiogenesis and interstitial hypertension,” Cancer Research, vol. 56, no. 18, pp. 4264–4266, 1996. View at Scopus
  94. R. K. Jain, R. T. Tong, and L. L. Munn, “Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model,” Cancer Research, vol. 67, no. 6, pp. 2729–2735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Overgaard, “Hypoxic radiosensitization: adored and ignored,” Journal of Clinical Oncology, vol. 25, no. 26, pp. 4066–4074, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. R. T. Tong, Y. Boucher, S. V. Kozin, F. Winkler, D. J. Hicklin, and R. K. Jain, “Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Research, vol. 64, no. 11, pp. 3731–3736, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. F. Winkler, S. V. Kozin, R. T. Tong et al., “Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases,” Cancer Cell, vol. 6, no. 6, pp. 553–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. A. L. Myers, R. F. Williams, C. Y. Ng, J. E. Hartwich, and A. M. Davidoff, “Bevacizumab-induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation,” Journal of Pediatric Surgery, vol. 45, no. 6, pp. 1080–1085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. R. P. M. Dings, M. Loren, H. Heun et al., “Scheduling of radiation with angiogenesis inhibitors anginex and avastin improves therapeutic outcome via vessel normalization,” Clinical Cancer Research, vol. 13, no. 11, pp. 3395–3402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. R. D. Leek, R. J. Landers, A. L. Harris, and C. E. Lewis, “Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast,” British Journal of Cancer, vol. 79, no. 5-6, pp. 991–995, 1999. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard, “Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy,” Journal of Experimental Medicine, vol. 193, no. 6, pp. 727–740, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Y. Lin, J. F. Li, G. Bricard et al., “Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages,” Molecular Oncology, vol. 1, no. 3, pp. 288–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. J. S. Lewis, R. J. Landers, J. C. Underwood, A. L. Harris, and C. E. Lewis, “Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas,” The Journal of Pathology, vol. 192, pp. 150–158, 2000.
  104. C. Stockmann, A. Doedens, A. Weidemann et al., “Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis,” Nature, vol. 456, no. 7223, pp. 814–818, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Kioi, H. Vogel, G. Schultz, R. M. Hoffman, G. R. Harsh, and J. M. Brown, “Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice,” Journal of Clinical Investigation, vol. 120, no. 3, pp. 694–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Camus, M. Tosolini, B. Mlecnik et al., “Coordination of intratumoral immune reaction and human colorectal cancer recurrence,” Cancer Research, vol. 69, no. 6, pp. 2685–2693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. C. Murdoch, M. Muthana, and C. E. Lewis, “Hypoxia regulates macrophage functions in inflammation,” Journal of Immunology, vol. 175, no. 10, pp. 6257–6263, 2005. View at Scopus
  108. A. L. Doedens, C. Stockmann, M. P. Rubinstein et al., “Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression,” Cancer Research, vol. 70, no. 19, pp. 7465–7475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. D. I. Gabrilovich, V. Bronte, S. H. Chen et al., “The terminology issue for myeloid-derived suppressor cells,” Cancer Research, vol. 67, no. 1, article 425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Melani, S. Sangaletti, F. M. Barazzetta, Z. Werb, and M. P. Colombo, “Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma,” Cancer Research, vol. 67, no. 23, pp. 11438–11446, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. F. Abe, A. J. Dafferner, M. Donkor et al., “Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice,” Cancer Immunology, Immunotherapy, vol. 59, no. 1, pp. 47–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. C. E. Clark, S. R. Hingorani, R. Mick, C. Combs, D. A. Tuveson, and R. H. Vonderheide, “Dynamics of the immune reaction to pancreatic cancer from inception to invasion,” Cancer Research, vol. 67, no. 19, pp. 9518–9527, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. C. M. Diaz-Montero, M. L. Salem, M. I. Nishimura, E. Garrett-Mayer, D. J. Cole, and A. J. Montero, “Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 49–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. H.-L. Sun, X. Zhou, Y.-F. Xue et al., “Increased frequency and clinical significance of myeloidderived suppressor cells in human colorectal carcinoma,” World Journal of Gastroenterology, vol. 18, no. 25, pp. 3303–3309, 2012. View at Publisher · View at Google Scholar
  115. K. Chikamatsu, K. Sakakura, M. Toyoda, K. Takahashi, T. Yamamoto, and K. Masuyama, “Immunosuppressive activity of CD14 + HLA-DR cells in squamous cell carcinoma of the head and neck,” Cancer Science, vol. 103, no. 6, pp. 976–983, 2012. View at Publisher · View at Google Scholar
  116. S. Vuk-Pavlović, P. A. Bulur, Y. Lin et al., “Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer,” Prostate, vol. 70, no. 4, pp. 443–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Hoechst, L. A. Ormandy, M. Ballmaier et al., “A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells,” Gastroenterology, vol. 135, no. 1, pp. 234–243, 2008. View at Publisher · View at Google Scholar
  118. L. Dolcetti, E. Peranzoni, S. Ugel et al., “Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF,” European Journal of Immunology, vol. 40, no. 1, pp. 22–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Movahedi, M. Guilliams, J. Van Den Bossche et al., “Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell suppressive activity,” Blood, vol. 111, no. 8, pp. 4233–4244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. M. R. Porembka, J. B. Mitchem, B. A. Belt et al., “Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth,” Cancer Immunology, Immunotherapy, vol. 61, no. 9, pp. 1373–1385, 2012. View at Publisher · View at Google Scholar
  121. G. R. Ryan, X. M. Dai, M. G. Dominguez et al., “Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1op/Csf1op) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis,” Blood, vol. 98, no. 1, pp. 74–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. V. Bronte, D. B. Chappell, E. Apolloni et al., “Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation,” Journal of Immunology, vol. 162, no. 10, pp. 5728–5737, 1999. View at Scopus
  123. L. J. Bayne, G. L. Beatty, N. Jhala et al., “Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and t cell immunity in pancreatic cancer,” Cancer Cell, vol. 21, no. 6, pp. 822–835, 2012. View at Publisher · View at Google Scholar
  124. M. Kowanetz, X. Wu, J. Lee et al., “Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21248–21255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. M. K. Donkor, E. Lahue, T. A. Hoke et al., “Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells,” International Immunopharmacology, vol. 9, no. 7-8, pp. 937–948, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. J. D. Waight, Q. Hu, A. Miller, S. Liu, and S. I. Abrams, “Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism,” PLoS One, vol. 6, no. 11, Article ID e27690, 2011. View at Publisher · View at Google Scholar
  127. F. M. Uckun, L. Souza, K. G. Waddick, M. Wick, and C. W. Song, “In vivo radioprotective effects of recombinant human granulocyte colony-stimulating factor in lethally irradiated mice,” Blood, vol. 75, no. 3, pp. 638–645, 1990. View at Scopus
  128. J. M. Bertho, J. Frick, M. Prat et al., “Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model,” International Journal of Radiation Oncology Biology Physics, vol. 63, no. 3, pp. 911–920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Sureda, A. Valls, E. Kadar et al., “A single dose of granulocyte colony-stimulating factor modifies radiation-induced death in B6D2F1 mice,” Experimental Hematology, vol. 21, no. 12, pp. 1605–1607, 1993. View at Scopus
  130. D. Thierry, P. Gourmelon, C. Parmentier, and J. C. Nenot, “Haematopoietic growth factors in the treatment of therapeutic and accidental irradiation-induced bone marrow aplasia,” International Journal of Radiation Biology, vol. 67, no. 2, pp. 103–117, 1995. View at Scopus
  131. K. C. Flanders, B. M. Ho, P. R. Arany et al., “Absence of Smad3 induces neutrophil migration after cutaneous irradiation: possible contribution to subsequent radioprotection,” American Journal of Pathology, vol. 173, no. 1, pp. 68–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Sinha, V. K. Clements, S. K. Bunt, S. M. Albelda, and S. Ostrand-Rosenberg, “Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response,” Journal of Immunology, vol. 179, no. 2, pp. 977–983, 2007. View at Scopus
  133. J. Vincent, G. Mignot, F. Chalmin et al., “5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity,” Cancer Research, vol. 70, no. 8, pp. 3052–3061, 2010. View at Publisher · View at Google Scholar
  134. E. Suzuki, V. Kapoor, A. S. Jassar, L. R. Kaiser, and S. M. Albelda, “Gemcitabine selectively eliminates splenic Gr-1+/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity,” Clinical Cancer Research, vol. 11, no. 18, pp. 6713–6721, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Sinha, V. K. Clements, and S. Ostrand-Rosenberg, “Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease,” Journal of Immunology, vol. 174, no. 2, pp. 636–645, 2005. View at Scopus
  136. J. W. Hodge, A. Ardiani, B. Farsaci, A. R. Kwilas, and S. R. Gameiro, “The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors,” Seminars in Oncology, vol. 39, no. 3, pp. 323–339, 2012. View at Publisher · View at Google Scholar
  137. A. G. W. Moses, J. Maingay, K. Sangster, K. C. H. Fearon, and J. A. Ross, “Pro-inflammatory cytokine release by peripheral blood mononuclear cells from patients with advanced pancreatic cancer: relationship to acute phase response and survival,” Oncology Reports, vol. 21, no. 4, pp. 1091–1095, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. S. B. Corradin, Y. Buchmuller-Rouiller, J. Smith, L. Suardet, and J. Mauel, “Transforming growth factor β1 regulation of macrophage activation depends on the triggering stimulus,” Journal of Leukocyte Biology, vol. 54, no. 5, pp. 423–429, 1993. View at Scopus
  139. V. Boutard, R. Havouis, B. Fouqueray, C. Philippe, J. P. Moulinoux, and L. Baud, “Transforming growth factor-β stimulates arginase activity in macrophages: implications for the regulation of macrophage cytotoxicity,” Journal of Immunology, vol. 155, no. 4, pp. 2077–2084, 1995. View at Scopus
  140. T. A. Mustoe, G. F. Pierce, and A. Thomason, “Accelerated healing of incisional wounds in rats induced by transforming growth factor-β,” Science, vol. 237, no. 4820, pp. 1333–1336, 1987. View at Scopus
  141. L. S. Beck, L. DeGuzman, W. P. Lee, Y. Xu, M. W. Siegel, and E. P. Amento, “One systemic administration of transforming growth factor-β1 reverses age- or glucocorticoid-impaired wound healing,” Journal of Clinical Investigation, vol. 92, no. 6, pp. 2841–2849, 1993. View at Scopus
  142. R. D. Granstein, M. R. Deak, S. L. Jacques et al., “The systemic administration of gamma interferon inhibits collagen synthesis and acute inflammation in a murine skin wounding model,” Journal of Investigative Dermatology, vol. 93, no. 1, pp. 18–27, 1989. View at Scopus
  143. T. Takahara, K. Sugiyama, L. P. Zhang et al., “Cotreatment with interferon-α and γ reduces liver fibrosis in a rat model,” Hepatology Research, vol. 28, no. 3, pp. 146–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. J. Wu, W. M. Cai, Q. Li et al., “Long-term antifibrotic action of interferon-γ treatment in patients with chronic hepatitis B virus infection,” Hepatobiliary and Pancreatic Diseases International, vol. 10, no. 2, pp. 151–157, 2011. View at Scopus
  145. Y. Ishida, T. Kondo, T. Takayasu, Y. Iwakura, and N. Mukaida, “The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process,” Journal of Immunology, vol. 172, no. 3, pp. 1848–1855, 2004. View at Scopus
  146. P. Liu, J. Jaffar, Y. Zhou, Y. Yang, I. Hellström, and K. E. Hellström, “Inhibition of TGFβ1 makes nonimmunogenic tumor cells effective for therapeutic vaccination,” Journal of Immunotherapy, vol. 32, no. 3, pp. 232–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. L. Gorelink and R. A. Flavell, “Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells,” Nature Medicine, vol. 7, no. 10, pp. 1118–1122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. W. Chen, W. Jin, N. Hardegen et al., “Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3,” Journal of Experimental Medicine, vol. 198, no. 12, pp. 1875–1886, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. E. Sato, S. H. Olson, J. Ahn et al., “Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18538–18543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Awwad and R. J. North, “Immunologically mediated regression of a murine lymphoma after treatment with anti-L3T4 antibody. A consequence of removing L3T4+ suppressor T cells from a host generating predominantly Lyt-2+ T cell-mediated immunity,” Journal of Experimental Medicine, vol. 168, no. 6, pp. 2193–2206, 1988. View at Scopus
  152. J. Shimizu, S. Yamazaki, and S. Sakaguchi, “Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity,” Journal of Immunology, vol. 163, no. 10, pp. 5211–5218, 1999. View at Scopus
  153. P. Flechsig, M. Dadrich, S. Bickelhaupt et al., “LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals,” Clinical Cancer Research, vol. 18, no. 13, pp. 3616–3627, 2012. View at Publisher · View at Google Scholar
  154. M. E. Hardee, A. E. Marciscano, C. M. Medina-Ramirez, D. Zagzag, A. Narayana, and M. H. Barcellos-Hoff, “Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β,” Cancer Research, vol. 72, no. 16, pp. 4119–4129, 2012. View at Publisher · View at Google Scholar
  155. M. Zhang, S. Kleber, M. Röhrich et al., “Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma,” Cancer Research, vol. 71, no. 23, pp. 7155–7167, 2011. View at Publisher · View at Google Scholar
  156. K. Garrison, T. Hahn, W.-C. Lee, L. E. Ling, A. D. Weinberg, and E. T. Akporiaye, “The small molecule TGF-β signaling inhibitor SM16 synergizes with agonistic OX40 antibody to suppress established mammary tumors and reduce spontaneous metastasis,” Cancer Immunology, Immunotherapy, vol. 61, no. 4, pp. 511–521, 2012. View at Publisher · View at Google Scholar
  157. P. C. Rodríguez and A. C. Ochoa, “Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives,” Immunological Reviews, vol. 222, no. 1, pp. 180–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. P. C. Rodriguez, D. G. Quiceno, and A. C. Ochoa, “L-arginine availability regulates T-lymphocyte cell-cycle progression,” Blood, vol. 109, no. 4, pp. 1568–1573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. P. C. Rodriguez, D. G. Quiceno, J. Zabaleta et al., “Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses,” Cancer Research, vol. 64, no. 16, pp. 5839–5849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. P. C. Rodriguez, A. H. Zea, J. DeSalvo et al., “L-arginine consumption by macrophages modulates the expression of CD3ζ chain in T lymphocytes,” Journal of Immunology, vol. 171, no. 3, pp. 1232–1239, 2003. View at Scopus
  161. P. C. Rodriguez, A. H. Zea, K. S. Culotta, J. Zabaleta, J. B. Ochoa, and A. C. Ochoa, “Regulation of T cell receptor CD3ζ chain expression by L-arginine,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21123–21129, 2002. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Baniyash, “TCR ζ-chain downregulation: curtailing an excessive inflammatory immune response,” Nature Reviews Immunology, vol. 4, no. 9, pp. 675–687, 2004. View at Publisher · View at Google Scholar · View at Scopus
  163. J. B. Ochoa, A. C. Bernard, W. E. O'Brien et al., “Arginase I expression and activity in human mononuclear cells after injury,” Annals of Surgery, vol. 233, no. 3, pp. 393–399, 2001. View at Publisher · View at Google Scholar · View at Scopus
  164. B. J. Tsuei, A. C. Bernard, M. D. Shane et al., “Surgery induces human mononuclear cell arginase I expression,” Journal of Trauma, vol. 51, no. 3, pp. 497–502, 2001. View at Scopus
  165. L. R. Brunet, F. D. Finkelman, A. W. Cheever, M. A. Kopf, and E. J. Pearce, “IL-4 protects against TNF-α-mediated cachexia and death during acute schistosomiasis,” Journal of Immunology, vol. 159, no. 2, pp. 777–785, 1997. View at Scopus
  166. D. R. Herbert, C. Hölscher, M. Mohrs et al., “Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology,” Immunity, vol. 20, no. 5, pp. 623–635, 2004. View at Publisher · View at Google Scholar
  167. M. Modolell, B. S. Choi, R. O. Ryan et al., “Local suppression of T cell responses by arginase-induced L-arginine depletion in nonhealing leishmaniasis,” PLoS Neglected Tropical Diseases, vol. 3, no. 7, article no. e480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. J. E. Albina, J. A. Abate, and B. Mastrofrancesco, “Role of ornithine as a proline precursor in healing wounds,” Journal of Surgical Research, vol. 55, no. 1, pp. 97–102, 1993. View at Publisher · View at Google Scholar · View at Scopus
  169. R. Kuhn, J. Lohler, D. Rennick, K. Rajewsky, and W. Muller, “Interleukin-10-deficient mice develop chronic enterocolitis,” Cell, vol. 75, no. 2, pp. 263–274, 1993. View at Publisher · View at Google Scholar · View at Scopus
  170. J. R. Bleharski, H. Li, C. Meinken et al., “Use of genetic profiling in leprosy to discriminate clinical forms of the disease,” Science, vol. 301, no. 5639, pp. 1527–1530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. R. D. W. Malefyt, J. Abrams, B. Bennett, C. G. Figdor, and J. E. De Vries, “Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes,” Journal of Experimental Medicine, vol. 174, no. 5, pp. 1209–1220, 1991. View at Scopus
  172. R. D. W. Malefyt, J. Haanen, H. Spits et al., “Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression,” Journal of Experimental Medicine, vol. 174, no. 4, pp. 915–924, 1991. View at Scopus
  173. H. Kuwata, Y. Watanabe, H. Miyoshi et al., “IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages,” Blood, vol. 102, no. 12, pp. 4123–4129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  174. B. K. Halak, H. C. Maguire, and E. C. Lattime, “Tumor-induced interleukin-10 inhibits type 1 immune responses directed at a tumor antigen as well as a non-tumor antigen present at the tumor site,” Cancer Research, vol. 59, no. 4, pp. 911–917, 1999. View at Scopus
  175. C. Guiducci, A. P. Vicari, S. Sangaletti, G. Trinchieri, and M. P. Colombo, “Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection,” Cancer Research, vol. 65, no. 8, pp. 3437–3446, 2005. View at Scopus
  176. A. M. Di Giacomo, M. Biagioli, and M. Maio, “The emerging toxicity profiles of antiCTLA-4 antibodies across clinical indications,” Seminars in Oncology, vol. 37, no. 5, pp. 499–507, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. M. M. Shull, I. Ormsby, A. B. Kier et al., “Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease,” Nature, vol. 359, no. 6397, pp. 693–699, 1992. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Ganss, E. Ryschich, E. Klar, B. Arnold, and G. J. Hämmerling, “Combination of T-cell therapy and trigger of inflammation induces remodeling of the vasculature and tumor eradication,” Cancer Research, vol. 62, no. 5, pp. 1462–1470, 2002. View at Scopus
  179. S. P. Kerkar, P. Muranski, A. Kaiser et al., “Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts,” Cancer Research, vol. 70, no. 17, pp. 6725–6734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. S. P. Kerkar, R. S. Goldszmid, P. Muranski et al., “IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors,” Journal of Clinical Investigation, vol. 121, no. 12, pp. 4746–4757, 2011. View at Publisher · View at Google Scholar
  181. M. J. Gough, C. E. Ruby, W. L. Redmond, B. Dhungel, A. Brown, and A. D. Weinberg, “OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor,” Cancer Research, vol. 68, no. 13, pp. 5206–5215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. M. A. Curran, W. Montalvo, H. Yagita, and J. P. Allison, “PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 9, pp. 4275–4280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. R. R. Huang, J. Jalil, J. S. Economou et al., “CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans,” Clinical Cancer Research, vol. 17, no. 12, pp. 4101–4109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  184. S. Demaria, N. Kawashima, A. M. Yang et al., “Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer,” Clinical Cancer Research, vol. 11, no. 2 I, pp. 728–734, 2005. View at Scopus
  185. M. A. Postow, M. K. Callahan, C. A. Barker et al., “Immunologic correlates of the abscopal effect in a patient with melanoma,” The New England Journal of Medicine, vol. 366, no. 10, pp. 925–931, 2012. View at Publisher · View at Google Scholar
  186. S. A. Rosenberg, J. J. Mule, P. J. Spiess, C. M. Reichert, and S. L. Schwarz, “Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2,” Journal of Experimental Medicine, vol. 161, no. 5, pp. 1169–1188, 1985. View at Scopus
  187. S. K. Seung, B. D. Curti, M. Crittenden et al., “Phase 1 study of stereotactic body radiotherapy and interleukin-2: tumor and immunological responses,” Science Translational Medicine, vol. 4, no. 137, Article ID er137ra74, 2012. View at Publisher · View at Google Scholar
  188. M. J. Gough, N. Killeen, and A. D. Weinberg, “Targeting macrophages in the tumour environment to enhance the efficacy of αOX40 therapy,” Immunology, vol. 136, no. 4, pp. 437–447, 2012. View at Publisher · View at Google Scholar