About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 320168, 9 pages
http://dx.doi.org/10.1155/2013/320168
Research Article

Role of Bacterial Lipopolysaccharide in Enhancing Host Immune Response to Candida albicans

1Tissue Engineering and Reparative Dentistry, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
2School of Bioscience, College of Biomedical and Life Sciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK

Received 25 October 2012; Revised 17 December 2012; Accepted 17 December 2012

Academic Editor: K. Blaser

Copyright © 2013 Helen Rogers et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Haas, K. Zimmermann, F. Graw et al., “Systemic antibody responses to gut commensal bacteria during chronic HIV-1 infection,” Gut, vol. 60, no. 11, pp. 1506–1519, 2011. View at Publisher · View at Google Scholar
  2. P. Paquet, C. Piérard-Franchimont, G. E. Piérard, and P. Quatresooz, “Skin fungal biocontamination and the skin hydrogel pad test,” Archives of Dermatological Research, vol. 300, no. 4, pp. 167–171, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Q. Wei, H. Rogers, M. A. O. Lewis, and D. W. Williams, “The role of the IL-12 cytokine family in directing T-cell responses in oral candidosis,” Clinical and Developmental Immunology, vol. 2011, Article ID 697340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Vellappally, Z. Fiala, J. Smejkalová, V. Jacob, and R. Somanathan, “Smoking related systemic and oral diseases,” Acta Medica, vol. 50, no. 3, pp. 161–166, 2007. View at Scopus
  5. C. Dawes, “Salivary flow patterns and the health of hard and soft oral tissues,” Journal of the American Dental Association, vol. 139, no. 5, supplement, pp. 18S–24S, 2008. View at Scopus
  6. C. Salerno, M. Pascale, M. Contaldo et al., “Candida-associated denture stomatitis,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 16, no. 2, pp. e139–e143, 2011. View at Publisher · View at Google Scholar
  7. I. Alajbeg and V. Vucićević-Boras, “Burning mouth syndrome—etiologic, diagnostic and therapeutic considerations,” Liječnički Vjesnik, vol. 124, no. 6-7, pp. 220–224, 2002. View at Scopus
  8. W. C. Gonsalves, A. C. Chi, and B. W. Neville, “Common oral lesions: part I. Superficial mucosal lesions,” American Family Physician, vol. 75, no. 4, pp. 501–507, 2007. View at Scopus
  9. J. C. Junqueira, “Models hosts for the study of oral candidiasis,” Advances in Experimental Medicine and Biology, vol. 710, pp. 95–105, 2012. View at Publisher · View at Google Scholar
  10. D. Strasser, K. Neumann, H. Bergmann et al., “Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity,” Immunity, vol. 36, no. 1, pp. 32–42, 2012. View at Publisher · View at Google Scholar
  11. I. D. Iliev, V. A. Funari, K. D. Taylor et al., “Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis,” Science, vol. 336, no. 6086, pp. 1314–1317, 2012. View at Publisher · View at Google Scholar
  12. G. D. Brown and S. Gordon, “Immune recognition. A new receptor for β-glucans,” Nature, vol. 413, no. 6851, pp. 36–37, 2001. View at Scopus
  13. P. R. Taylor, S. V. Tsoni, J. A. Willment et al., “Dectin-1 is required for β-glucan recognition and control of fungal infection,” Nature Immunology, vol. 8, no. 1, pp. 31–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. S. Goodridge, C. N. Reyes, C. A. Becker et al., “Activation of the innate immune receptor Dectin-1 upon formation of a ‘Phagocytic synapse’,” Nature, vol. 472, no. 7344, pp. 471–475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. S. I. Gringhuis, T. M. Kaptein, B. A. Wevers, B. Theelen, and T. Boekhout, “Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome,” Nature Immunology, vol. 13, no. 3, pp. 246–254, 2012. View at Publisher · View at Google Scholar
  16. B. Ferwerda, G. Ferwerda, T. S. Plantinga et al., “Human dectin-1 deficiency and mucocutaneous fungal infections,” New England Journal of Medicine, vol. 361, no. 18, pp. 1760–1767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. LeibundGut-Landmann, O. Groß, M. J. Robinson et al., “Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17,” Nature Immunology, vol. 8, no. 6, pp. 630–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. C. Rogers, E. C. Slack, A. D. Edwards et al., “Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins,” Immunity, vol. 22, no. 4, pp. 507–517, 2005. View at Publisher · View at Google Scholar
  19. S. I. Gringhuis, J. den Dunnen, M. Litjens et al., “Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk,” Nature Immunology, vol. 10, no. 2, pp. 203–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. R. Conti, F. Shen, N. Nayyar et al., “Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis,” Journal of Experimental Medicine, vol. 206, no. 2, pp. 299–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Wakabayashi, N. Takakura, S. Teraguchi, and Y. Tamura, “Lactoferrin feeding augments peritoneal macrophage activities in mice intraperitoneally injected with inactivated,” Microbiology and Immunology, vol. 47, no. 1, pp. 37–43, 2003. View at Scopus
  22. I. Rajkovic, A. Dragicevic, S. Vasilijic et al., “Differences in T-helper polarizing capability between human monocyte-derived dendritic cells and monocyte-derived Langerhans'-like cells,” Immunology, vol. 132, no. 2, pp. 217–225, 2011. View at Publisher · View at Google Scholar
  23. J. A. Swanson, “Shaping cups into phagosomes and macropinosomes,” Nature Reviews Molecular Cell Biology, vol. 9, no. 8, pp. 639–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. Kinchen, K. Doukoumetzidis, J. Almendinger et al., “A pathway for phagosome maturation during engulfment of apoptotic cells,” Nature Cell Biology, vol. 10, no. 5, pp. 556–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. Underhill and A. Ozinsky, “Phagocytosis of microbes: complexity in action,” Annual Review of Immunology, vol. 20, pp. 825–852, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. H. S. Goodridge and D. M. Underhill, “Fungal recognition by TLR2 and dectin-1,” Handbook of Experimental Pharmacology, no. 183, pp. 87–109, 2008. View at Scopus
  27. R. Káposzta, L. Maródi, M. Hollinshead, S. Gordon, and R. P. Da Silva, “Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans,” Journal of Cell Science, vol. 112, no. 19, pp. 3237–3248, 1999. View at Scopus
  28. S. Malic, K. E. Hill, J. R. Ralphs et al., “Characterization of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy,” Oral Microbiology and Immunology, vol. 22, no. 3, pp. 188–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Chen, X. Q. Wei, B. Evans, W. Jiang, and D. Aeschlimann, “IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-B (RANK) expression in myeloid precursor cells,” European Journal of Immunology, vol. 38, no. 10, pp. 2845–2854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Reid, M. Montoya, P. R. Taylor et al., “Expression of the β-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 86–94, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. C. V. Bonfim, R. L. Mamoni, and M. H. S. Lima Blotta, “TLR-2, TLR-4 and dectin-1 expression in human monocytes and neutrophils stimulated by Paracoccidioides brasiliensis,” Medical Mycology, vol. 47, no. 7, pp. 722–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. H. M. L. P. Navarathna, K. W. Nickerson, G. E. Duhamel, T. R. Jerrels, and T. M. Petro, “Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model,” Infection and Immunity, vol. 75, no. 8, pp. 4006–4011, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Raška, J. Běláková, M. Křupka, and E. Weigl, “Candidiasis—do we need to fight or to tolerate the Candida fungus?” Folia Microbiologica, vol. 52, no. 3, pp. 297–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Dimitrova, M. Yordanov, S. Danova, and N. Ivanovska, “Enhanced resistance against systemic Candida albicans infection in mice treated with C. albicans DNA,” FEMS Immunology and Medical Microbiology, vol. 53, no. 2, pp. 231–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Saunus, S. A. Wagner, M. A. Matias, Y. Hu, Z. M. Zaini, and C. S. Farah, “Early activation of the interleukin-23-17 axis in a murine model of oropharyngeal candidiasis,” Molecular Oral Microbiology, vol. 25, no. 5, pp. 343–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Rivas and T. J. Rogers, “Studies on the cellular nature of Candida albicans-induced suppression,” Journal of Immunology, vol. 130, no. 1, pp. 376–379, 1983. View at Scopus
  37. N. Sachdeva, J. E. Weinstein, M. Ashman et al., “Poor lymphoproliferative responses with low proportion of gag-specific CD8 TEMRA cells in HIV-1-infected patients showing immunological and virological discordance despite prolonged suppression of plasma viremia,” Viral Immunology, vol. 23, no. 1, pp. 49–61, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Kalo-Klein and S. S. Witkin, “Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans,” Infection and Immunity, vol. 58, no. 1, pp. 260–262, 1990. View at Scopus
  39. R. T. Wheeler, D. Kombe, S. D. Agarwala, and G. R. Fink, “Dynamic, morphotype-specific Candida albicansβ-glucan exposure during infection and drug treatment,” PLoS Pathogens, vol. 4, no. 12, Article ID e1000227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. R. Perfect and K. A. Wright, “Amphotericin B lipid complex in the treatment of experimental cryptococcal meningitis and disseminated candidosis,” Journal of Antimicrobial Chemotherapy, vol. 33, no. 1, pp. 73–81, 1994. View at Scopus
  41. L. J. Reitan, O. Closs, and A. Belehu, “In vitro lymphocyte stimulation in patients with lepromatous and borderline tuberculoid leprosy. The effect of dapsone treatment on the response to Mycobacterium leprae antigens, tuberculin purified protein derivative and non-mycobacterial stimulants,” International Journal of Leprosy, vol. 50, no. 4, pp. 455–467, 1982. View at Scopus
  42. J. A. Willment, A. S. Marshall, D. M. Reid et al., “The human β-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells,” European Journal of Immunology, vol. 35, no. 5, pp. 1539–1547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. J. A. Willment, H.-H. Lin, D. M. Reid, S. Y. C. Wong, and G. D. Brown, “Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide,” Journal of Immunology, vol. 171, no. 9, pp. 4569–4573, 2003.