About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 387023, 8 pages
http://dx.doi.org/10.1155/2013/387023
Review Article

Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

1Department of Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China
2Department of Gastroenterology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
3Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853, China
4ImmunoPhotonics Inc., Columbia, MO 65211, USA
5Dermatology Associates of San Antonio, San Antonio, TX 78233, USA
6Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA

Received 12 September 2012; Revised 22 December 2012; Accepted 26 December 2012

Academic Editor: Clelia M. Riera

Copyright © 2013 Xiaosong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Mellman, G. Coukos, and G. Dranoff, “Cancer immunotherapy comes of age,” Nature, vol. 480, no. 7378, pp. 480–489, 2011.
  2. M. Vanneman and G. Dranoff, “Combining immunotherapy and targeted therapies in cancer treatment,” Nature Reviews Cancer, vol. 12, no. 4, pp. 237–251, 2012.
  3. O. J. Finn, “Molecular origins of cancer: cancer immunology,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2704–2715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Zhou and H. Levitsky, “Towards curative cancer immunotherapy: overcoming posttherapy tumor escape,” Clinical and Developmental Immunology, vol. 2012, Article ID 124187, 12 pages, 2012. View at Publisher · View at Google Scholar
  5. C. L. Zindl and D. D. Chaplin, “Immunology: tumor immune evasion,” Science, vol. 328, no. 5979, pp. 697–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Pardoll, “The blockade of immune checkpoints in cancer immunotherapy,” NatureReviews Cancer, vol. 12, no. 4, pp. 252–264, 2012.
  7. A. Batista-Duharte, E. B. Lindblad, and E. Oviedo-Orta, “Progress in understanding adjuvant immunotoxicity mechanisms,” Toxicology Letters, vol. 203, no. 2, pp. 97–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Montomoli, S. Piccirella, B. Khadang, et al., “Current adjuvants and new perspectives invaccine formulation,” Expert Review of Vaccines, vol. 10, no. 7, pp. 1053–1061, 2011.
  9. V. E. J. C. Schijns, “Mechanisms of vaccine adjuvant activity: initiation and regulation of immune responses by vaccine adjuvants,” Vaccine, vol. 21, no. 9-10, pp. 829–831, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Seya, T. Akazawa, J. Uehori, M. Matsumoto, I. Azuma, and K. Toyoshima, “Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer,” Anticancer Research, vol. 23, no. 6 A, pp. 4369–4376, 2003. View at Scopus
  11. A. C. Allison, “Squalene and squalane emulsions as adjuvants,” Methods, vol. 19, no. 1, pp. 87–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Felnerova, J. F. Viret, R. Glück, and C. Moser, “Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs,” Current Opinion in Biotechnology, vol. 15, no. 6, pp. 518–529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Schwaninger, E. Waelti, P. Zajac, A. Wetterwald, D. Mueller, and C. D. Gimmi, “Virosomes as new carrier system for cancer vaccines,” Cancer Immunology, Immunotherapy, vol. 53, no. 11, pp. 1005–1017, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Gnjatic, N. B. Sawhney, and N. Bhardwaj, “Toll-like receptor agonists are they good adjuvants?” Cancer Journal, vol. 16, no. 4, pp. 382–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Adams, “Toll-like receptor agonists in cancer therapy,” Immunotherapy, vol. 1, no. 6, pp. 949–964, 2009.
  16. B. Plohmann, G. Bader, K. Hiller, and G. Franz, “Immunomodulatory and antitumor effects of triterpenoid saponins,” Pharmazie, vol. 52, no. 12, pp. 953–957, 1997. View at Scopus
  17. A. T. Glenny, C. G. Pope, H. Waddington, et al., “Immunological notes XVII to XXIV,” The Journal of Pathology and Bacteriology, vol. 29, pp. 31–40, 1926.
  18. F. R. Vogel and M. F. Powell, “A compendium of vaccine adjuvants and excipients,” Pharmaceutical Biotechnology, vol. 6, pp. 141–228, 1995. View at Scopus
  19. M. Yang, Y. Yan, M. Fang, et al., “MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1(+) tumor immunity in mice,” International Immunopharmacology, vol. 13, no. 4, pp. 408–416, 2012.
  20. C. W. Cluff, “Monophosphoryl lipid a (MPL) as an adjuvant for anti-cancer vaccines: clinical results,” Advances in Experimental Medicine and Biology, vol. 667, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. K. Gupta and G. R. Siber, “Adjuvants for human vaccines. Current status, problems and future prospects,” Vaccine, vol. 13, no. 14, pp. 1263–1276, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. D. F. Hoft, V. Brusic, and I. G. Sakala, “Optimizing vaccine development,” Cellular Microbiology, vol. 13, no. 7, pp. 934–942, 2011.
  23. J. Cebon, “Cancer vaccines: where are we going?” Asia-Pacific Journal of Clinical Oncology, vol. 6, no. supplement 1, pp. S9–S15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Schlom, “Therapeutic cancer vaccines: current status and moving forward,” Journal of the National Cancer Institute, vol. 104, no. 8, pp. 599–613, 2012.
  25. B. Krajewska, “Membrane-based processes performed with use of chitin/chitosan materials,” Separation and Purification Technology, vol. 41, no. 3, pp. 305–312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. A. A. Muzzarelli, “Human enzymatic activities related to the therapeutic administration of chitin derivatives,” Cellular and Molecular Life Sciences, vol. 53, no. 2, pp. 131–140, 1997. View at Publisher · View at Google Scholar · View at Scopus
  27. C. K. S. Pillai, W. Paul, and C. P. Sharma, “Chitin and chitosan polymers: chemistry, solubility and fiber formation,” Progress in Polymer Science, vol. 34, no. 7, pp. 641–678, 2009.
  28. Y. Zhao, R. D. Park, and R. A. A. Muzzarelli, “Chitin deacetylases: properties and applications,” Marine Drugs, vol. 8, no. 1, pp. 24–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Synowiecki and N. A. Al-Khateeb, “Production, properties, and some new applications of chitin and its derivatives,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 2, pp. 145–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Kato, H. Onishi, and Y. Machida, “Application of chitin and chitosan derivatives in the pharmaceutical field,” Current Pharmaceutical Biotechnology, vol. 4, no. 5, pp. 303–309, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. D. Gades and J. S. Stern, “Chitosan supplementation and fat absorption in men and women,” Journal of the American Dietetic Association, vol. 105, no. 1, pp. 72–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. R. Kaats, J. E. Michalek, and H. G. Preuss, “Evaluating efficacy of a chitosan product using a double-blinded, placebo-controlled protocol,” Journal of the American College of Nutrition, vol. 25, no. 5, pp. 389–394, 2006. View at Scopus
  33. V. Jarmila and E. Vavríková, “Chitosan derivatives with antimicrobial, antitumour and antioxidant activities—a review,” Current Pharmaceutical Design, vol. 17, no. 32, pp. 3596–3607, 2011.
  34. A. Mahapatro and D. K. Singh, “Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines,” Journal of Nanobiotechnology, vol. 9, no. 55, 2011.
  35. M. P. Patel, R. R. Patel, and J. K. Patel, “Chitosan mediated targeted drug delivery system: a review,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 4, pp. 536–557, 2010. View at Scopus
  36. P. Fonte, J. C. Andrade, V. Seabra, et al., “Chitosan-based nanoparticles as delivery systems of therapeutic proteins,” Methods in Molecular Biology, vol. 899, pp. 471–487, 2012.
  37. T. Dai, M. Tanaka, Y. Y. Huang, and M. R. Hamblin, “Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects,” Expert Review of Anti-Infective Therapy, vol. 9, no. 7, pp. 857–879, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Takei, H. Nakahara, H. Ijima, et al., “Synthesis of a chitosan derivative soluble at neutral pH and gellable by freeze-thawing, and its application in wound care,” Acta Biomaterialia, vol. 8, no. 2, pp. 686–693, 2012.
  39. K. Suzuki, Y. Okawa, and K. Hashimoto, “Protecting effect of chitin and chitosan on experimentally induced murine candidiasis,” Microbiology and Immunology, vol. 28, no. 8, pp. 903–912, 1984. View at Scopus
  40. K. Nishimura, S. Nishimura, and N. Nishi, “Immunological activity of chitin and its derivatives,” Vaccine, vol. 2, no. 1, pp. 93–99, 1984. View at Scopus
  41. K. Nishimura, C. Ishihara, and S. Ukei, “Stimulation of cytokine production in mice using deacetylated chitin,” Vaccine, vol. 4, no. 3, pp. 151–156, 1986. View at Scopus
  42. K. Nishimura, S. I. Nishimura, and N. Nishi, “Adjuvant activity of chitin derivatives in mice and guinea-pigs,” Vaccine, vol. 3, no. 5, pp. 379–384, 1985. View at Scopus
  43. I. M. van der Lubben, J. C. Verhoef, G. Borchard, and H. E. Junginger, “Chitosan for mucosal vaccination,” Advanced Drug Delivery Reviews, vol. 52, no. 2, pp. 139–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. R. C. Read, S. C. Naylor, C. W. Potter, et al., “Effective nasal influenza vaccine delivery using chitosan,” Vaccine, vol. 23, no. 35, pp. 4367–4374, 2005.
  45. E. A. McNeela, I. Jabbal-Gill, L. Illum et al., “Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2 responses and toxin-neutralizing antibodies by formulation with chitosan,” Vaccine, vol. 22, no. 8, pp. 909–914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Illum, I. Jabbal-Gill, M. Hinchcliffe, A. N. Fisher, and S. S. Davis, “Chitosan as a novel nasal delivery system for vaccines,” Advanced Drug Delivery Reviews, vol. 51, no. 1–3, pp. 81–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. M. J. Heffernan, D. A. Zaharoff, J. K. Fallon, J. Schlom, and J. W. Greiner, “In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines,” Biomaterials, vol. 32, no. 3, pp. 926–932, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. K. Azab, V. Doviner, B. Orkin et al., “Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat,” Journal of Biomedical Materials Research A, vol. 83, no. 2, pp. 414–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Yao, J. P. Zhou, Q. N. Ping, Y. Lu, and L. Chen, “Distribution of nobiletin chitosan-based microemulsions in brain following i.v. injection in mice,” International Journal of Pharmaceutics, vol. 352, no. 1-2, pp. 256–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Kwak, K. H. Sung, K. S. Seung, M. R. Jei, S. P. Moon, and E. L. Sang, “Effective local control of prostate cancer by intratumoral injection of 166Ho-chitosan complex (DW-166HC) in rats,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 32, no. 12, pp. 1400–1405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Shibata, L. A. Foster, W. J. Metzger, et al., “Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice,” Infection and Immunity, vol. 65, no. 5, pp. 1734–1741, 1997.
  52. Y. Shibata, W. James Metzger, and Q. N. Myrvik, “Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production,” Journal of Immunology, vol. 159, no. 5, pp. 2462–2467, 1997. View at Scopus
  53. S. Tokura, H. Tamura, and I. Azuma, “Immunological aspects of chitin and chitin derivatives administered to animals,” EXS, vol. 87, pp. 279–292, 1999. View at Scopus
  54. C. G. Lee, C. A. Da Silva, J. Y. Lee, D. Hartl, and J. A. Elias, “Chitin regulation of immune responses: an old molecule with new roles,” Current Opinion in Immunology, vol. 20, no. 6, pp. 684–689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. C. G. Lee, “Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling,” Yonsei Medical Journal, vol. 50, no. 1, pp. 22–30, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. A. Da Silva, P. Pochard, C. G. Lee, and J. A. Elias, “Chitin particles are multifaceted immune adjuvants,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 12, pp. 1482–1491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Marcinkiewicz, A. Polewska, and J. Knapczyk, “Immunoadjuvant properties of chitosan,” Archivum Immunologiae Et Therapiae Experimentalis, vol. 39, no. 1-2, pp. 127–132, 1991.
  58. P. G. Seferian and M. L. Martinez, “Immune stimulating activity of two new chitosan containing adjuvant formulations,” Vaccine, vol. 19, no. 6, pp. 661–668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. D. A. Zaharoff, C. J. Rogers, K. W. Hance, J. Schlom, and J. W. Greiner, “Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination,” Vaccine, vol. 25, no. 11, pp. 2085–2094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. D. A. Zaharoff, C. J. Rogers, K. W. Hance, J. Schlom, and J. W. Greiner, “Chitosan solution enhances the immunoadjuvant properties of GM-CSF,” Vaccine, vol. 25, no. 52, pp. 8673–8686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. D. A. Zaharoff, K. W. Hance, C. J. Rogers, J. Schlom, and J. W. Greiner, “Intratumoral immunotherapy of established solid tumors with chitosan/il-12,” Journal of Immunotherapy, vol. 33, no. 7, pp. 697–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. V. K. Mourya and N. N. Inamdar, “Trimethyl chitosan and its applications in drug delivery,” Journal of Materials Science. Materials in Medicine, vol. 20, no. 5, pp. 1057–1079, 2009.
  63. D. Lee, Z. S. Quan, C. Lu, et al., “Preparation and physical properties of chitosan benzoic acid derivatives using a phosphoryl mixed anhydride system,” Molecules, vol. 17, no. 2, pp. 2231–2239, 2012.
  64. G. Bajaj, W. G. Van Alstine, Y. Yeo, et al., “Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release,” PLoS ONE, vol. 7, no. 1, Article ID e30899, 2012.
  65. X. Li, P. Wu, G. F. Gao, et al., “Carbohydrate-functionalized chitosan fiber for influenza virus capture,” Biomacromolecules, vol. 12, no. 11, pp. 3962–3969, 2011.
  66. Y. C. Chung, J. Y. Yeh, and C. F. Tsai, “Antibacterial characteristics and activity of water-soluble chitosan derivatives prepared by the Maillard reaction,” Molecules, vol. 16, no. 10, pp. 8504–8514, 2011.
  67. M. Sugano, S. Watanabe, A. Kishi, et al., “Hypocholesterolemic action of chitosans with different viscosity in rats,” Lipids, vol. 23, no. 3, pp. 187–191, 1988.
  68. S. Song, F. Zhou, R. E. Nordquist, R. Carubelli, H. Liu, and W. R. Chen, “Glycated chitosan as a new non-toxic immunological stimulant Glycated chitosan immunological stimulant,” Immunopharmacology and Immunotoxicology, vol. 31, no. 2, pp. 202–208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Xu, H. Liu, X. Wu, et al., “Measurement of x-ray attenuation coefficients of aqueous solutions of indocyanine green and glycated chitosan,” Medical Physics, vol. 26, no. 7, pp. 1371–1374, 1999.
  70. W. R. Chen, R. Carubelli, H. Liu, and R. E. Nordquist, “Laser immunotherapy: a novel treatment modality for metastatic tumors,” Applied Biochemistry and Biotechnology B, vol. 25, no. 1, pp. 37–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. W. R. Chen, H. Liu, J. W. Ritchey, et al., “Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats,” Cancer Research, vol. 62, no. 15, pp. 4295–4299, 2002.
  72. X. Li, G. L. Ferrel, M. C. Guerra, et al., “Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients,” Photochemical & Photobiological Sciences, vol. 10, no. 5, pp. 817–821, 2011.
  73. W. R. Chen, M. Korbelik, K. E. Bartels, H. Liu, J. Sun, and R. E. Nordquist, “Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant,” Photochemistry and Photobiology, vol. 81, no. 1, pp. 190–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Le, X. Li, D. Figueroa, et al., “Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method,” Journal of Biomedical Optics, vol. 16, no. 12, Article ID 128001, 2011.
  75. T. J. Yoon, J. Y. Kim, H. Kim, et al., “Anti-tumor immunostimulatory effect of heat-killed tumor cells,” Experimental and Molecular Medicine, vol. 40, no. 1, pp. 130–144, 2008.
  76. E. Jager, D. Jager, and A. Knuth, “Antigen-specific immunotherapy and cancer vaccines,” International Journal of Cancer, vol. 106, no. 6, pp. 817–820, 2003.
  77. F. Wu, L. Zhou, and W. R. Chen, “Host antitumour immune responses to HIFU ablation,” International Journal of Hyperthermia, vol. 23, no. 2, pp. 165–171, 2007.
  78. X. Li and W. R. Chen, “Laser immunotherapy: novel modality to treat cancer through specific antitumor immune response,” Zhongguo Jiguang/Chinese Journal of Lasers, vol. 37, no. 11, pp. 2698–2702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. B. H. Segal, X. Y. Wang, C. G. Dennis, et al., “Heat shock proteins as vaccine adjuvants in infections and cancer,” Discovery Today, vol. 11, no. 11-12, pp. 534–540, 2006.
  80. B. Liu, D. Ye, X. Song et al., “A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis,” Vaccine, vol. 26, no. 10, pp. 1387–1396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Bolhassani and S. Rafati, “Heat-shock proteins as powerful weapons in vaccine development,” Expert Review of Vaccines, vol. 7, no. 8, pp. 1185–1199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Torigoe, Y. Tamura, and N. Sato, “Heat shock proteins and immunity: application of hyperthermia for immunomodulation,” International Journal of Hyperthermia, vol. 25, no. 8, pp. 610–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Nishikawa, S. Takemoto, and Y. Takakura, “Heat shock protein derivatives for delivery of antigens to antigen presenting cells,” International Journal of Pharmaceutics, vol. 354, no. 1-2, pp. 23–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. X. Li, F. Zhou, H. Le, et al., “Mechanism study of tumor-specific immune responses induced by laser immunotherapy,” in Biophotonics and Immune Responses VI, vol. 7900 of Proceedings of SPIE, 2011. View at Publisher · View at Google Scholar
  85. T. B. H. Geijtenbeek and S. I. Gringhuis, “Signalling through C-type lectin receptors: shaping immune responses,” Nature Reviews Immunology, vol. 9, no. 7, pp. 465–479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Zhou, S. Song, W. R. Chen, et al., “Immunostimulatory properties of glycated chitosan,” Journal of X-Ray Science and Technology, vol. 19, no. 2, pp. 285–292, 2011.
  87. W. R. Chen, S. W. Jeong, M. D. Lucroy, et al., “Induced anti-tumor immunity against DMBA-4 metastatic mammary tumors in rats using a novel approach,” International Journal of Cancer, vol. 107, no. 6, pp. 1053–1057, 2003.
  88. W. R. Chen, A. K. Singhal, H. Liu, et al., “Antitumor immunity induced by laser immunotherapy and its adoptive transfer,” Cancer Research, vol. 61, no. 2, pp. 459–461, 2001.
  89. X. Li, H. Le, R. F. Wolf, et al., “Long-term effect on EMT6 tumors in mice induced by combination of laser immunotherapy and surgery,” Integrative Cancer Therapies, vol. 10, no. 4, pp. 368–373, 2011.
  90. H. Peniche and C. Peniche, “Chitosan nanoparticles: a contribution to nanomedicine,” Polymer International, vol. 60, no. 6, pp. 883–889, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Sharma, T. K. Mukkur, H. A. Benson, et al., “Enhanced immune response against pertussis toxoid by IgA-loaded chitosan-dextran sulfate nanoparticles,” Journal of Pharmaceutical Sciences, vol. 101, no. 1, pp. 233–244, 2012.
  92. J. J. Wang, Z. W. Zeng, R. Z. Xiao, et al., “Recent advances of chitosan nanoparticles as drug carriers,” International Journal of Nanomedicine, vol. 6, pp. 765–774, 2011.
  93. P. Yousefpour, F. Atyabi E, E. Vasheghani-Farahani, et al., “Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-Her2 trastuzumab,” International Journal of Nanomedicine, vol. 6, pp. 1977–1990, 2011.
  94. Z. S. Wen, Y. L. Xu, X. T. Zou, and Z. R. Xu, “Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice,” Marine Drugs, vol. 9, no. 6, pp. 1038–1055, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Y. Wu, M. Wu, M. L. Fu et al., “A novel chitosan CpG nanoparticle regulates cellular and humoral immunity of mice,” Biomedical and Environmental Sciences, vol. 19, no. 2, pp. 87–95, 2006. View at Scopus
  96. M. A. Danesh-Bahreini, J. Shokri, A. Samiei, et al., “Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice,” International Journal of Nanomedicine, vol. 6, pp. 835–842, 2011.
  97. N. Saranya, A. Moorthi, S. Saravanan, M. P. Devi, and N. Selvamurugan, “Chitosan and its derivatives for gene delivery,” International Journal of Biological Macromolecules, vol. 48, no. 2, pp. 234–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Park, E. J. Jeong, J. Lee, et al., “Preparation and characterization of nonaarginine-modified chitosan nanoparticles for siRNA delivery,” Carbohydrate Polymers, vol. 92, pp. 57–62, 2013.