About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 510547, 7 pages
http://dx.doi.org/10.1155/2013/510547
Research Article

TRAF1-C5 Affects Quality of Life in Patients with Primary Biliary Cirrhosis

1Liver Research Laboratories, Pomeranian Medical University, Aleja Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
2Liver Unit, Department of General Surgery and Liver Transplantation, Warsaw Medical University, ul. Banacha 1a, 02-097 Warsaw, Poland
3Medical Biology Laboratory, Pomeranian Medical University, Aleja Powstańców Wielkopolskich 72 70-111 Szczecin, Poland
4Institute of Liver Studies, King’s College London School of Medicine, King’s College Hospital, Denmark Hill, London SE5 9RS, UK

Received 6 March 2013; Accepted 6 April 2013

Academic Editor: Eirini I. Rigopoulou

Copyright © 2013 Joanna Raszeja-Wyszomirska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Kaplan and M. E. Gershwin, “Primary biliary cirrhosis,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1261–1273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. P. Bogdanos and L. Komorowski, “Disease-specific autoantibodies in primary biliary cirrhosis,” Clinica Chimica Acta, vol. 412, no. 7-8, pp. 502–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. P. Bogdanos, P. Invernizzi, I. R. Mackay, and D. Vergani, “Autoimmune liver serology: current diagnostic and clinical challenges,” World Journal of Gastroenterology, vol. 14, no. 21, pp. 3374–3387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. P. Bogdanos, D. S. Smyk, E. I. Rigopoulou et al., “Twin studies in autoimmune disease: genetics, gender and environment,” Journal of Autoimmunity, vol. 38, no. 2-3, pp. J156–J169, 2012.
  5. C. Selmi and M. E. Gershwin, “The role of environmental factors in primary biliary cirrhosis,” Trends in Immunology, vol. 30, no. 8, pp. 415–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Gershwin and I. R. Mackay, “The causes of primary biliary cirrhosis: convenient and inconvenient truths,” Hepatology, vol. 47, no. 2, pp. 737–745, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. M. Hirschfield, X. Liu, C. Xu et al., “Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants,” The New England Journal of Medicine, vol. 360, no. 24, pp. 2544–2555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. G. M. Hirschfield, X. Liu, Y. Han et al., “Variants at IRF5-TNPO3, 17q12-21 and MMEL1 are associated with primary biliary cirrhosis,” Nature Genetics, vol. 42, no. 8, pp. 655–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Liu, P. Invernizzi, Y. Lu et al., “Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis,” Nature Genetics, vol. 42, no. 8, pp. 658–660, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. F. Mells, J. A. B. Floyd, K. I. Morley et al., “Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis,” Nature Genetics, vol. 43, no. 4, pp. 332–333, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. B. D. Juran, G. M. Hirschfield, P. Invernizzi et al., “Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk Variants,” Human Molecular Genetics, vol. 21, no. 23, Article ID dds359, pp. 5209–5221, 2012. View at Publisher · View at Google Scholar
  12. J. Z. Liu, M. A. Almarri, D. J. Gaffney et al., “Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis,” Nature Genetics, vol. 44, no. 10, pp. 1137–1141, 2012. View at Publisher · View at Google Scholar
  13. M. Nakamura, N. Nishida, M. Kawashima et al., “Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population,” The American Journal of Human Genetics, vol. 91, no. 4, pp. 721–728, 2012. View at Publisher · View at Google Scholar
  14. A. Lleo, M. E. Gershwin, A. Mantovani, and P. Invernizzi, “Towards common denominators in primary biliary cirrhosis: the role of IL-12,” Journal of Hepatology, vol. 56, no. 3, pp. 731–733, 2012. View at Publisher · View at Google Scholar
  15. A. Tanaka, S. Quaranta, A. Mattalia et al., “The tumor necrosis factor-α promoter correlates with progression of primary biliary cirrhosis,” Journal of Hepatology, vol. 30, no. 5, pp. 826–829, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. D. E. J. Jones, F. E. Watt, J. Grove et al., “Tumour necrosis factor-α promoter polymorphisms in primary biliary cirrhosis,” Journal of Hepatology, vol. 30, no. 2, pp. 232–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Donaldson, S. Veeramani, A. Baragiotta et al., “Cytotoxic T-lymphocyte-associated antigen-4 single nucleotide polymorphisms and haplotypes in primary biliary cirrhosis,” Clinical Gastroenterology and Hepatology, vol. 5, no. 6, pp. 755–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Kempinska-Podhorodecka, Z. Shums, E. Wunsch et al., “TRAF1 gene polymorphism correlates with the titre of Gp210 antibody in patients with primary biliary cirrhosis,” Clinical and Developmental Immunology, vol. 2012, Article ID 487521, 7 pages, 2012. View at Publisher · View at Google Scholar
  19. F. A. S. Kurreeman, D. Rocha, J. Houwing-Duistermaat et al., “Replication of the tumor necrosis factor receptor-associated factor 1/complement component 5 region as a susceptibility locus for rheumatoid arthritis in a european family-based study,” Arthritis and Rheumatism, vol. 58, no. 9, pp. 2670–2674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. I. Zervou, P. Sidiropoulos, E. Petraki et al., “Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population,” Human Immunology, vol. 69, no. 9, pp. 567–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Plenge, M. Seielstad, L. Padyukov et al., “TRAF1-C5 as a risk locus for rheumatoid arthritis: a genomewide study,” The New England Journal of Medicine, vol. 357, no. 12, pp. 1199–1209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. F. A. S. Kurreeman, G. N. Goulielmos, B. Z. Alizadeh et al., “The TRAF1-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 696–699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Y. Lee and Y. Choi, “TRAF1 and its biological functions,” Advances in Experimental Medicine and Biology, vol. 597, pp. 25–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Bao and R. J. Quigg, “Complement in Lupus Nephritis: the good, the bad, and the unknown,” Seminars in Nephrology, vol. 27, no. 1, pp. 69–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. H. Sacks, “Complement fragments C3a and C5a: the salt and pepper of the immune response,” European Journal of Immunology, vol. 40, no. 3, pp. 668–670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. P. Atkinson, “C5a and Fcγ receptors: a mutual admiration society,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 304–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. E. Schmidt and J. E. Gessner, “Fc receptors and their interaction with complement in autoimmunity,” Immunology Letters, vol. 100, no. 1, pp. 56–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Barak, C. Selmi, M. Schlesinger et al., “Serum inflammatory cytokines, complement components, and soluble interleukin 2 receptor in primary biliary cirrhosis,” Journal of Autoimmunity, vol. 33, no. 3-4, pp. 178–182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Schlesinger, C. Benbassat, and Y. Shoenfeld, “Complement profile in primary biliary cirrhosis,” Immunologic Research, vol. 11, no. 2, pp. 98–103, 1992. View at Scopus
  30. M. G. Swain, P. Beck, K. Rioux, and T. Le, “Augmented interleukin-1β-induced depression of locomotor activity in cholestatic rats,” Hepatology, vol. 28, no. 6, pp. 1561–1565, 1998. View at Scopus
  31. S. M. Kerfoot, C. D'Mello, H. Nguyen et al., “TNF-α-secreting monocytes are recruited into the brain of cholestatic mice,” Hepatology, vol. 43, no. 1, pp. 154–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Maes, F. N. Twisk, and K. Ringel, “Inflammatory and cell-mediated immune biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression: inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue syndrome than in depression,” Psychotherapy and Psychosomatics, vol. 81, no. 5, pp. 286–295, 2012.
  33. G. E. Hermann and R. C. Rogers, “TNFα: a trigger of autonomic dysfunction,” Neuroscientist, vol. 14, no. 1, pp. 53–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Jiang, R. Deacon, D. C. Anthony, and S. J. Campbell, “Inhibition of peripheral TNF can block the malaise associated with CNS inflammatory diseases,” Neurobiology of Disease, vol. 32, no. 1, pp. 125–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Fotin-Mleczek, F. Henkler, A. Hausser et al., “Tumor Necrosis Factor Receptor-associated Factor (TRAF) 1 Regulates CD40-induced TRAF2-mediated NF-κB Activation,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 677–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Xie, B. S. Hostager, M. E. Munroe, C. R. Moore, and G. A. Bishop, “Cooperation between TNF receptor-associated factors 1 and 2 in CD40 signaling,” Journal of Immunology, vol. 176, no. 9, pp. 5388–5400, 2006. View at Scopus
  37. European Association for the Study of the Liver, “EASL Clinical Practice Guidelines: management of cholestatic liver diseases,” Journal of Hepatology, vol. 51, no. 2, pp. 237–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. E. Ware Jr. and C. D. Sherbourne, “The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection,” Medical Care, vol. 30, no. 6, pp. 473–483, 1992. View at Scopus
  39. A. Jacoby, A. Rannard, D. Buck et al., “Development, validation, and evaluation of the PBC-40, a disease specific health related quality of life measure for primary biliary cirrhosis,” Gut, vol. 54, no. 11, pp. 1622–1629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Montali, A. Tanaka, P. Riva et al., “A short version of a HRQoL questionnaire for Italian and Japanese patients with Primary Biliary Cirrhosis,” Digestive and Liver Disease, vol. 42, no. 10, pp. 718–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhu, D. Zhang, F. Wu et al., “Single nucleotide polymorphisms at the TRAF1/C5 locus are associated with rheumatoid arthritis in a Han Chinese population,” BMC Medical Genetics, vol. 12, article 53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Redler, F. F. Brockschmidt, L. Forstbauer et al., “The TRAF1/C5 locus confers risk for familial and severe alopecia areata,” British Journal of Dermatology, vol. 162, no. 4, pp. 866–869, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Potter, S. Eyre, A. Cope, J. Worthington, and A. Barton, “Investigation of association between the TRAF family genes and RA susceptibility,” Annals of the Rheumatic Diseases, vol. 66, no. 10, pp. 1322–1326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Nishimoto, Y. Kochi, K. Ikari et al., “Association study of TRAF1-C5 polymorphisms with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in Japanese,” Annals of the Rheumatic Diseases, vol. 69, no. 2, pp. 368–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. B. Hughes, R. J. Reynolds, E. E. Brown et al., “Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans,” Arthritis Care and Research, vol. 62, no. 12, pp. 3547–3553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. T. U. Han, S. Y. Bang, C. Kang, and S. C. Bae, “TRAF1 polymorphisms associated with rheumatoid arthritis susceptibility in asians and in caucasians,” Arthritis and Rheumatism, vol. 60, no. 9, pp. 2577–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Knevel, D. P. de Rooy, P. K. Gregersen, E. Lindqvist, et al., “Studying associations between variants in TRAF1-C5 and TNFAIP3-OLIG3 and the progression of joint destruction in rheumatoid arthritis in multiple cohorts,” Annals of the Rheumatic Diseases, vol. 71, no. 10, pp. 1753–1755, 2012.
  48. R. H. Mohamed, H. F. Pasha, and E. E. El-Shahawy, “Influence of TRAF1/C5 and STAT4 genes polymorphisms on susceptibility and severity of rheumatoid arthritis in Egyptian population,” Cellular Immunology, vol. 273, no. 1, pp. 67–72, 2012.
  49. A. W. Morgan, J. I. Robinson, P. G. Conaghan et al., “Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort,” Arthritis Research and Therapy, vol. 12, no. 2, article R57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Wesierska-Gadek, E. Penner, P. M. Battezzati et al., “Correlation of initial autoantibody profile and clinical outcome in primary biliary cirrhosis,” Hepatology, vol. 43, no. 5, pp. 1135–1144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Nakamura, H. Kondo, T. Mori et al., “Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis,” Hepatology, vol. 45, no. 1, pp. 118–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Itoh, T. Ichida, T. Yoshida et al., “Autoantibodies against a 210 kDa glycoprotein of the nuclear pore complex as a prognostic marker in patients with primary biliary cirrhosis,” Journal of Gastroenterology and Hepatology, vol. 13, no. 3, pp. 257–265, 1998. View at Scopus
  53. J. Visser, W. Graffelman, B. Blauw et al., “LPS-induced IL-10 production in whole blood cultures from chronic fatigue syndrome patients is increased but supersensitive to inhibition by dexamethasone,” Journal of Neuroimmunology, vol. 119, no. 2, pp. 343–349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. A. T. White, A. R. Light, R. W. Hughen et al., “Severity of symptom flare after moderate exercise is linked to cytokine activity in chronic fatigue syndrome,” Psychophysiology, vol. 47, no. 4, pp. 615–624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. I. Pavese, F. Satta, F. Todi et al., “High serum levels of TNF-α and IL-6 predict the clinical outcome of treatment with human recombinant erythropoietin in anaemic cancer patients,” Annals of Oncology, vol. 21, no. 7, pp. 1523–1528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. E. Poupon, Y. Chrétien, O. Chazouillères, R. Poupon, and J. Chwalow, “Quality of life in patients with primary biliary cirrhosis,” Hepatology, vol. 40, no. 2, pp. 489–494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. M. Younossi, M. L. Kiwi, N. Boparai, L. L. Price, and G. Guyatt, “Cholestatic liver diseases and health-related quality of life,” The American Journal of Gastroenterology, vol. 95, no. 2, pp. 497–502, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. G. L. H. Wong, F. M. Y. Law, V. W. S. Wong et al., “Health-related quality of life in Chinese patients with primary biliary cirrhosis,” Journal of Gastroenterology and Hepatology, vol. 23, no. 4, pp. 592–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. E. D. Sogolow, J. N. Lasker, and L. M. Short, “Fatigue as a major predictor of quality of life in women with autoimmune liver disease. The case of primary biliary cirrhosis,” Women's Health Issues, vol. 18, no. 4, pp. 336–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. H. L. Tillmann, M. Wiese, Y. Braun et al., “Quality of life in patients with various liver diseases: patients with HCV show greater mental impairment, while patients with PBC have greater physical impairment,” Journal of Viral Hepatitis, vol. 18, no. 4, pp. 252–261, 2011. View at Publisher · View at Google Scholar · View at Scopus