About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 548085, 9 pages
http://dx.doi.org/10.1155/2013/548085
Clinical Study

Effects of Rapamycin Combined with Low Dose Prednisone in Patients with Chronic Immune Thrombocytopenia

Key Lab of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China

Received 22 September 2013; Accepted 5 November 2013

Academic Editor: Jacek Tabarkiewicz

Copyright © 2013 Jiaming Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ji, Y. Zhan, F. Hua, et al., “The ratio of treg/th17 cells correlates with the disease activity of primary immune thrombocytopenia,” PLoS One, vol. 7, Article ID e50909, 2012. View at Publisher · View at Google Scholar
  2. H. U. Teke, E. Gunduz, O. M. Akay, and Z. Gulbas, “Abnormality of regulatory T-cells in remission and non-remission idiopathic thrombocytopaenic purpura patients,” Platelets, vol. 24, no. 8, pp. 625–631, 2013. View at Publisher · View at Google Scholar
  3. L.-M. Aboul-Fotoh, M. M. A. Raheem, M. A. El-Deen, and A. M. Osman, “Role of CD4+CD25+ T cells in children with idiopathic thrombocytopenic purpura,” Journal of Pediatric Hematology/Oncology, vol. 33, no. 2, pp. 81–85, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Yu, S. Heck, V. Patel et al., “Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura,” Blood, vol. 112, no. 4, pp. 1325–1328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. A. Peterson, “Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression,” Toxicologic Pathology, vol. 40, no. 2, pp. 186–204, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Semple and D. Provan, “The immunopathogenesis of immune thrombocytopenia: T cells still take center-stage,” Current Opinion in Hematology, vol. 19, no. 5, pp. 357–362, 2012. View at Publisher · View at Google Scholar
  7. B. Olsson, P.-O. Andersson, M. Jernås et al., “T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura,” Nature Medicine, vol. 9, no. 9, pp. 1123–1124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Ling, X. Cao, Z. Yu, and C. Ruan, “Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome,” European Journal of Haematology, vol. 79, no. 4, pp. 310–316, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Stasi, N. Cooper, G. D. Poeta et al., “Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell depleting therapy with rituximab,” Blood, vol. 112, no. 4, pp. 1147–1150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Li, W. Mou, G. Lu et al., “Low-dose rituximab combined with short-term glucocorticoids up-regulates Treg cell levels in patients with immune thrombocytopenia,” International Journal of Hematology, vol. 93, no. 1, pp. 91–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Bao, J. B. Bussel, S. Heck et al., “Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents,” Blood, vol. 116, no. 22, pp. 4639–4645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Food and Drug Administration, “FDA approves rapamune to prevent organ rejection,” http://www.fda.gov/bbs/topics/ANSWERS/ANS00974.html.
  13. M. Battaglia, A. Stabilini, and E. Tresoldi, “Expanding human T regulatory cells with the mTOR-inhibitor rapamycin,” Methods in Molecular Biology, vol. 821, pp. 279–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. G. M. Delgoffe and J. D. Powell, “Exploring functional in vivo consequences of the selective genetic ablation of mTOR signaling in T helper lymphocytes,” Methods in Molecular Biology, vol. 821, pp. 317–327, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. Delgoffe, T. P. Kole, Y. Zheng et al., “The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment,” Immunity, vol. 30, no. 6, pp. 832–844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Zeiser, V. H. Nguyen, A. Beilhack et al., “Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production,” Blood, vol. 108, no. 1, pp. 390–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Bocian, J. Borysowski, P. Wierzbicki et al., “Rapamycin, unlike cyclosporine A, enhances suppressive functions of in vitro-induced CD4+CD25+ Tregs,” Nephrology Dialysis Transplantation, vol. 25, no. 3, pp. 710–717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Battaglia, A. Stabilini, and M.-G. Roncarolo, “Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells,” Blood, vol. 105, no. 12, pp. 4743–4748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Zhang, J. Shan, J. Lu et al., “Rapamycin in combination with donor-specific CD4+CD25+Treg cells amplified in vitro might be realize the immune tolerance in clinical organ transplantation,” Cellular Immunology, vol. 264, no. 2, pp. 111–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. D. Dummer, V. N. Carpio, L. F. Gonçalves, R. C. Manfro, and F. V. Veronese, “FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance,” Transplant Immunology, vol. 26, no. 1, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Coghill, M. J. Carlson, T. P. Moran, and J. S. Serody, “The biology and therapeutic potential of natural regulatory T-cells in the bone marrow transplant setting,” Leukemia and Lymphoma, vol. 49, no. 10, pp. 1860–1869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Iwase, T. Kobayashi, Y. Kodera et al., “Clinical significance of regulatory T-cell-related gene expression in peripheral blood after renal transplantation,” Transplantation, vol. 91, no. 2, pp. 191–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Battaglia, A. Stabilini, B. Migliavacca, J. Horejs-Hoeck, T. Kaupper, and M.-G. Roncarolo, “Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients,” Journal of Immunology, vol. 177, no. 12, pp. 8338–8347, 2006. View at Scopus
  24. V. R. Breakey and V. S. Blanchette, “Childhood immune thrombocytopenia: a changing therapeutic landscape,” Seminars in Thrombosis and Hemostasis, vol. 37, no. 7, pp. 745–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. W. Lai, R. Hanczko, E. Bonilla, et al., “N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial,” Arthritis & Rheumatism, vol. 64, no. 9, pp. 2937–2946, 2012. View at Publisher · View at Google Scholar
  26. G. A. Bruyn, G. Tate, F. Caeiro et al., “Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate: a 3-month, double-blind, randomised, placebo-controlled, parallel-group, proof-of-concept study,” Annals of the Rheumatic Diseases, vol. 67, no. 8, pp. 1090–1095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Liu, H. Zhao, M.-C. Poon et al., “Abnormality of CD4+CD25+ regulatory T cells in idiopathic thrombocytopenic purpura,” European Journal of Haematology, vol. 78, no. 2, pp. 139–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Nishimoto and M. Kuwana, “CD4+CD25+Foxp3+ regulatory T Cells in the pathophysiology of immune thrombocytopenia,” Seminars in Hematology, vol. 50, supplement 1, pp. S43–S49, 2013. View at Publisher · View at Google Scholar
  29. S. P. Hilchey and S. H. Bernstein, “Use of CFSE to monitor ex vivo regulatory T-cell suppression of CD4+ and CD8+ T-cell proliferation within unseparated mononuclear cells from malignant and non-malignant human lymph node biopsies,” Immunological Investigations, vol. 36, no. 5-6, pp. 629–648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. R. Choudhary, R. Naithani, M. Mahapatra, R. Kumar, P. Mishra, and R. Saxena, “Efficacy of cyclosporine as a single agent therapy in chronic idiopathic thrombocytopenic purpura,” Haematologica, vol. 93, no. 10, pp. e61–e62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Emilia, M. Luppi, M. Morselli, F. Forghieri, L. Potenza, and G. Torelli, “A possible role for low-dose cyclosporine in refractory immune thrombocytopenic purpura,” Haematologica, vol. 93, no. 7, pp. 1113–1115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Emilia, M. Morselli, M. Luppi et al., “Long-term salvage therapy with cyclosporin a in refractory idipathic thrombocytopenic purpura,” Blood, vol. 99, no. 4, pp. 1482–1485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Arnold, I. Nazi, A. Santos et al., “Combination immunosuppressant therapy for patients with chronic refractory immune thrombocytopenic purpura,” Blood, vol. 115, no. 1, pp. 29–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. R. Ruprecht, M. Gattorno, F. Ferlito et al., “Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia,” Journal of Experimental Medicine, vol. 201, no. 11, pp. 1793–1803, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. van Amelsfort, J. A. van Roon, M. Noordegraaf et al., “Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 56, no. 3, pp. 732–742, 2007. View at Publisher · View at Google Scholar · View at Scopus