About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 851452, 15 pages
http://dx.doi.org/10.1155/2013/851452
Research Article

Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

1Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
2Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation, Szpitalna 5, 95-080 Tuszyn, Poland

Received 16 July 2012; Revised 18 December 2012; Accepted 18 December 2012

Academic Editor: K. Blaser

Copyright © 2013 Magdalena Druszczynska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. N. Leung, “Pulmonary tuberculosis: the essentials,” Radiology, vol. 210, no. 2, pp. 307–322, 1999. View at Scopus
  2. S. A. Joosten, J. J. Goemann, J. S. Sutherland, et al., “Identification of biomarkers for tuberculosis disease using a novel dual-color RT-MLPA assay,” Genes and Immunity, vol. 13, pp. 71–82, 2012. View at Publisher · View at Google Scholar
  3. J. Dietrich and T. M. Doherty, “Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 117, no. 5-6, pp. 440–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. WHO, “Global Tuberculosis Control,” 2011, http://whqlibdoc.who.int/publications/2011/9789241564380_eng.pdf.
  5. M. Divangahi, M. Chen, H. Gan et al., “Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair,” Nature Immunology, vol. 10, no. 8, pp. 899–906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. E. Bowdish, K. Sakamoto, M.-J. Kim et al., “MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis,” PLoS Pathogens, vol. 5, no. 6, Article ID e1000474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Bernardo, A. M. Billingslea, R. L. Blumenthal, K. F. Seetoo, E. R. Simons, and M. J. Fenton, “Differential responses of human mononuclear phagocytes to mycobacterial lipoarabinomannans: role of CD14 and the mannose receptor,” Infection and Immunity, vol. 66, no. 1, pp. 28–35, 1998. View at Scopus
  8. R. Landmann, C. Ludwig, R. Obrist, and J. P. Obrecht, “Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages,” Journal of Cellular Biochemistry, vol. 47, no. 4, pp. 317–329, 1991. View at Scopus
  9. L. Ivashkiv, “Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states,” European Journal of Immunology, vol. 41, pp. 2470–2525, 2011.
  10. F. Y. Liew, D. Xu, E. K. Brint, and L. A. J. O'Neill, “Negative regulation of toll-like receptor-mediated immune responses,” Nature Reviews Immunology, vol. 5, no. 6, pp. 446–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Guenin-Macé, R. Siméone, and C. Demangel, “Lipids of pathogenic mycobacteria: contributions to virulence and host immune suppression,” Transboundary and Emerging Diseases, vol. 56, no. 6-7, pp. 255–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. P. Simmons, D. H. Canaday, Y. Liu et al., “Mycobacterium tuberculosis and TLR2 agonists inhibit induction of type I IFN and class I MHC antigen cross processing by TLR9,” Journal of Immunology, vol. 185, no. 4, pp. 2405–2415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Yu, E. Soprana, G. Cosentino et al., “Soluble CD141152Confers responsiveness to both lipoarabinomannan and lipopolisacharide in a novel HL-60 cell bioassay,” Journal of Immunology, vol. 161, pp. 4244–4251, 1998.
  14. D. E. Zhang, C. J. Hetherington, D. A. Gonzalez, H. M. Chen, and D. G. Tenen, “Regulation of CD14 expression during monocytic differentiation induced with 1α,25-dihydroxyvitamin D3,” Journal of Immunology, vol. 153, no. 7, pp. 3276–3284, 1994. View at Scopus
  15. L. S. Schlesinger, “Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors,” Journal of Immunology, vol. 150, no. 7, pp. 2920–2930, 1993. View at Scopus
  16. G. Schäfer, M. Jacobs, R. J. Wilkinson, and G. D. Brown, “Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes,” Journal of Innate Immunity, vol. 1, no. 3, pp. 231–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. S. Schlesinger, S. R. Hull, and T. M. Kaufman, “Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages,” Journal of Immunology, vol. 152, no. 8, pp. 4070–4079, 1994. View at Scopus
  18. L. S. Schlesinger, T. M. Kaufman, S. Iyer, S. R. Hull, and L. K. Marchiando, “Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages,” Journal of Immunology, vol. 157, no. 10, pp. 4568–4575, 1996. View at Scopus
  19. W. R. Berrington and T. R. Hawn, “Mycobacterium tuberculosis, macrophages, and the innate immune response: does common variation matter?” Immunological Reviews, vol. 219, no. 1, pp. 167–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Druszczyńska, D. Strapagiel, S. Kwiatkowska et al., “Tuberculosis bacilli still posing a threat. Polymorphism of genes regulating anti-mycobacterial properties of macrophages,” Polish Journal of Microbiology, vol. 55, no. 1, pp. 7–12, 2006. View at Scopus
  21. L. E. DesJardin, T. M. Kaufman, B. Potts, B. Kutzbach, H. Yi, and L. S. Schlesinger, “Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcγRII and the mannose receptor,” Microbiology, vol. 148, no. 10, pp. 3161–3171, 2002. View at Scopus
  22. W. Rudnicka, N. English, J. Farrant et al., “LFA-1-dependent OKT3-driven T cell clusters in common variable immunodeficiency,” Clinical and Experimental Immunology, vol. 87, no. 1, pp. 46–52, 1992. View at Scopus
  23. Y. O. Yoshida, M. Umemura, A. Yahagi et al., “Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung,” Journal of Immunology, vol. 184, no. 8, pp. 4414–4422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ghosh, A. A. Chackerian, C. M. Parker, Ch. M. Ballantyne, and S. M. Behar, “The LFA-1 adhesion molecule is required for protective immunity during pulmonary Mycobacterium tuberculosis infection,” Journal of Immunology, vol. 176, no. 8, pp. 4914–4922, 2006. View at Scopus
  25. L. Oliveira-Nascimento, P. Massari, and L. M. Wetzler, “The role of TLR2 in infection and immunity,” Frontiers in Immunology, vol. 3, pp. 1–17, 2012.
  26. R. I. Tapping and P. S. Tobias, “Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling,” Journal of Endotoxin Research, vol. 9, no. 4, pp. 264–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. M. J. Jimenez-Dalmaroni, N. Xiao, A. L. Corper et al., “Soluble CD36 ectodomain binds negatively charged diacylglycerol ligands and acts as a co-receptor for TLR2,” PLoS ONE, vol. 4, no. 10, Article ID e7411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Fol, A. Chauhan, N. K. Nair et al., “Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator,” Molecular Microbiology, vol. 60, no. 3, pp. 643–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. P. K. Peterson, G. Gekker, S. Hu et al., “CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia,” Infection and Immunity, vol. 63, no. 4, pp. 1598–1602, 1995. View at Scopus
  30. H. Shams, B. Wizel, D. L. Lakey et al., “The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes,” FEMS Immunology & Medical Microbiology, vol. 36, no. 1-2, pp. 63–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. D. Ernst, “Macrophage receptors for Mycobacterium tuberculosis,” Infection and Immunity, vol. 66, no. 4, pp. 1277–1281, 1998. View at Scopus
  32. L. S. Schlesinger, “Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors,” Journal of Immunology, vol. 150, no. 7, pp. 2920–2930, 1993. View at Scopus
  33. P. B. Kang, A. K. Azad, J. B. Torrelles et al., “The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 987–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Stenger, “Immunological control of tuberculosis: role of tumour necrosis factor and more,” Annals of the Rheumatic Diseases, vol. 64, no. 4, pp. iv24–iv28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. H. M. Ottenhoff and S. H. E. Kaufmann, “Vaccines against tuberculosis: where are we and where do we need to go?” PLoS Pathogens, vol. 8, Article ID e1002607, 2012.
  36. Y. Zhang, M. Doerfler, T. C. Lee, B. Guillemin, and W. N. Rom, “Mechanisms of stimulation of interleukin-1β and tumor necrosis factor-α by Mycobacterium tuberculosis components,” The Journal of Clinical Investigation, vol. 91, no. 5, pp. 2076–2083, 1993. View at Scopus
  37. P. Andersen, T. M. Doherty, M. Pai, and K. Weldingh, “The prognosis of latent tuberculosis: can disease be predicted?” Trends in Molecular Medicine, vol. 13, no. 5, pp. 175–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Q. Chu, M. Field, E. Andrew, D. Haskard, M. Feldmann, and R. N. Maini, “Detection of cytokines at the site of tuberculin-induced delayed-type hypersensitivity in man,” Clinical and Experimental Immunology, vol. 90, no. 3, pp. 522–529, 1992. View at Scopus
  39. M. R. Pourshafie and G. Sonnenfeld, “Treatment of an infected murine macrophage cell line (J774A.1) with interferon-γ but not tumor necrosis factor-α or live Mycobacterium intracellulare alone modulates the expression of adhesion molecules,” Journal of Interferon and Cytokine Research, vol. 17, no. 2, pp. 69–75, 1997. View at Scopus
  40. J. Turner, M. Gonzalez-Juarrero, B. M. Saunders et al., “Immunological basis for reactivation of tuberculosis in mice,” Infection and Immunity, vol. 69, pp. 3264–3270, 2001.
  41. B. M. Saunders and W. J. Britton, “Life and death in the granuloma: immunopathology of tuberculosis,” Immunology and Cell Biology, vol. 85, no. 2, pp. 103–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Chiacchio, E. Petruccioli, V. Vanini, et al., “Higher frequency of T-cell response to M. tuberculosis latency antigen Rv2628 at the site of active tuberculosis disease than in peripheral blood,” Plos One, vol. 6, Article ID e27539, 2011.
  43. E. Pacheco, C. Fonseca, C. Montes, J. Zabaleta, L. F. García, and M. A. Arias, “CD14 gene promoter polymorphism in different clinical forms of tuberculosis,” FEMS Immunology and Medical Microbiology, vol. 40, no. 3, pp. 207–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. D. Lawn, M. O. Labeta, M. Arias, J. W. Acheampong, and G. E. Griffin, “Elevated serum concentrations of soluble CD14 in HIV- and HIV+ patients with tuberculosis in Africa: prolonged elevation during anti-tuberculosis treatment,” Clinical and Experimental Immunology, vol. 120, no. 3, pp. 483–487, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. E. Nores, A. Bensussan, N. Vita, et al., “Soluble CD14 acts as a negative regulator of human T cell activation and function,” European Journal of Immunology, vol. 29, pp. 265–276, 1999.
  46. T. Griga, W. Klein, J. T. Epplen, U. Hebler, A. Stachon, and B. May, “CD14 expression on monocytes and soluble CD14 plasma levels in correlation to the promotor polymorphism of the endotoxin receptor CD14 gene in patients with inactive Crohn's disease,” Hepato-Gastroenterology, vol. 52, no. 63, pp. 808–811, 2005. View at Scopus
  47. E. Lien, P. Aukrust, A. Sundan, F. Müller, S. S. Frøland, and T. Espevik, “Elevated levels of serum-soluble CD14 in human immunodeficiency virus type 1 (HIV-1) infection: correlation to disease progression and clinical events,” Blood, vol. 92, no. 6, pp. 2084–2092, 1998. View at Scopus
  48. K. Egerer, E. Feist, U. Rohr, A. Pruss, G. R. Burmester, and T. Dorner, “Increased serum soluble CD14, ICAM-1 and E-selectin correlate with disease activity and prognosis in systemic lupus erythematosus,” Lupus, vol. 9, no. 8, pp. 614–621, 2000. View at Scopus
  49. J. Rupp, W. Goepel, E. Kramme, J. Jahn, W. Solbach, and M. Maass, “CD14 promoter polymorphism—159C > T is associated with susceptibility to chronic Chlamydia pneumoniae infection in peripheral blood monocytes,” Genes and Immunity, vol. 5, no. 5, pp. 435–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. J. Durieux, N. Vita, O. Popescu et al., “The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes,” European Journal of Immunology, vol. 24, no. 9, pp. 2006–2012, 1994. View at Scopus
  51. Z. Pan, L. Zhou, C. J. Hetherington, and D. E. Zhang, “Hepatocytes contribute to soluble CD14 production, and CD14 expression is differentially regulated in hepatocytes and monocytes,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 36430–36435, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. H. P. A. Jersmann, C. S. T. Hii, G. L. Hodge, and A. Ferrante, “Synthesis and surface expression of CD14 by human endothelial cells,” Infection and Immunity, vol. 69, no. 1, pp. 479–485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Bulut, K. S. Michelsen, L. Hayrapetian et al., “Mycobacterium tuberculosis heat shock proteins use diverse toll-like receptor pathways to activate pro-inflammatory signals,” The Journal of Biological Chemistry, vol. 280, no. 22, pp. 20961–20967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. T. K. Means, E. Lien, A. Yoshimura, S. Wang, D. T. Golenbock, and M. J. Fenton, “The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors,” Journal of Immunology, vol. 163, no. 12, pp. 6748–6755, 1999. View at Scopus
  55. S. Thoma-Uszynski, S. Stenger, O. Takeuchi et al., “Induction of direct antimicrobial activity through mammalian toll-like receptors,” Science, vol. 291, no. 5508, pp. 1544–1547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. J. J. Yim, H. W. Lee, H. S. Lee et al., “The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans,” Genes and Immunity, vol. 7, no. 2, pp. 150–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Abel, N. Thieblemont, V. J. F. Quesniaux et al., “Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice,” Journal of Immunology, vol. 169, no. 6, pp. 3155–3162, 2002. View at Scopus
  58. D.-M. Shin, J.-M. Yuk, H.-M. Lee et al., “Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling,” Cellular Microbiology, vol. 12, no. 11, pp. 1648–1665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Domínguez, M. D. Souza-Galvão, J. Ruiz-Manzano et al., “T-cell responses to the Mycobacterium tuberculosis-specific antigens in active tuberculosis patients at the beginning, during, and after antituberculosis treatment,” Diagnostic Microbiology and Infectious Disease, vol. 63, no. 1, pp. 43–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. C. B. E. Chee, T. M. S. Barkham, K. W. KhinMar, S. H. Gan, and Y. T. Wang, “Quantitative T-cell interferon-gamma responses to Mycobacterium tuberculosis-specific antigens in active and latent tuberculosis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 6, pp. 667–670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Higuchi, N. Harada, K. Fukazawa, and T. Mori, “Relationship between whole-blood interferon-gamma responses and the risk of active tuberculosis,” Tuberculosis, vol. 88, no. 3, pp. 244–248, 2008. View at Publisher · View at Google Scholar · View at Scopus