About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 872632, 9 pages
http://dx.doi.org/10.1155/2013/872632
Review Article

The Link between Ankylosing Spondylitis, Crohn’s Disease, Klebsiella, and Starch Consumption

1Analytical Sciences Group, Kings College, 150 Stamford Street, London SE1 9NH, UK
2Department of Pathology and Microbiology, Kings Edward VII Memorial Hospital, 7 Point Finger Road, Paget DV04, Bermuda

Received 22 October 2012; Accepted 23 April 2013

Academic Editor: Chung Tei Chou

Copyright © 2013 Taha Rashid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Beaten, M. Breban, R. Lories, G. Schett, and J. Sieper, “Are spondylarthritides related but distinct conditions or a single disease with a heterogenous phenotype?” Arthritis and Rheumatism, vol. 65, no. 1, pp. 12–20, 2013.
  2. R. Burgos-Vargas, “The assessment of the spondyloarthritis international society concept and criteria for the classification of axial spondyloarthritis and peripheral spondyloarthritis: a critical appraisal for pediatric rheumatologist,” Pediatric Rheumatology Online Journal, vol. 10, no. 1, pp. 1–14, 2012.
  3. I. Fabreguet, E. Koumakis, V. Burki, et al., “Assessment of work instability in spondyloarthritis: a cross-sectional study using the ankylosing spondylitis work instability scale,” Rheumatology, vol. 51, no. 2, pp. 333–337, 2012.
  4. N. Aissaoui, S. Rostom, J. Hakkou et al., “Fatigue in patients with ankylosing spondylitis: prevalence and relationships with disease-specific variables, psychological status, and sleep disturbance,” Rheumatology International, vol. 32, no. 7, pp. 2117–2124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Stjernman, C. Tysk, S. Almer, M. Ström, and H. Hjortswang, “Unfavourable outcome for women in a study of health-related quality of life, social factors and work disability in Crohn's disease,” European Journal of Gastroenterology and Hepatology, vol. 23, no. 8, pp. 671–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Thjodleifsson, A. J. Geirsson, S. Björnsson, and I. Bjarnason, “A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland,” Arthritis and Rheumatism, vol. 56, no. 8, pp. 2633–2639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Richard-Miceli and L. A. Criswell, “Emerging patterns of genetic overlap across autoimmune disorders,” Genome Medicine, vol. 4, no. 1, pp. 1–9, 2012.
  8. T. Yang, Z. Duan, S. Wu, et al., “Association of HLA-B27 genetic polymorphism with ankylosing spondylitis susceptibility worldwide: a meta-analysis,” Modern Rheumatology, 2013.
  9. D. A. Brewerton, F. D. Hart, A. Nicholls, M. Caffrey, D. C. James, and R. D. Sturrock, “Ankylosing spondylitis and HL-A 27,” Lancet, vol. 1, no. 7809, pp. 904–907, 1973. View at Scopus
  10. L. Schlosstein, P. I. Terasaki, R. Bluestone, and C. M. Pearson, “High association of an HL-A antigen, W27, with ankylosing spondylitis,” New England Journal of Medicine, vol. 288, no. 14, pp. 704–706, 1973. View at Scopus
  11. J. Braun and J. Sieper, “Ankylosing spondylitis, other spondyloarthritides, and related conditions,” in Oxford Textbook of Medicine, D. A. Warrell, T. M. Cox, and J. D. Firth, Eds., pp. 3603–3616, Oxford University Press, Oxford, UK, 5th edition, 2010.
  12. J. Zhai, J. Rong, Q. Li, and J. Gu, “Immunogenetic study in Chinese population with ankylosing spondylitis: are there specific genes recently disclosed?” Clinical & Developmental Immunology, vol. 2013, Article ID 419357, 6 pages, 2013. View at Publisher · View at Google Scholar
  13. H. Elding, W. Lau, D. M. Swallow, and N. Maniatis, “Refinement in localization and identification of gene regions associated with Crohn disease,” American Journal of Human Genetics, vol. 92, no. 1, pp. 107–113, 2013.
  14. A. Ebringer, T. Rashid, H. Tiwana, and C. Wilson, “A possible link between Crohn's disease and ankylosing spondylitis via Klebsiella infections,” Clinical Rheumatology, vol. 26, no. 3, pp. 289–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Rashid and A. Ebringer, “Gut-mediated and HLA-B27-associated arthritis: an emphasis on ankylosing spondylitis and Crohn’s disease with a proposal for the use of new treatment,” Discovery Medicine, vol. 12, no. 64, pp. 187–194, 2011.
  16. H. Mielants, E. M. Veys, C. Cuvelier et al., “The evolution of spondyloarthropathies in relation to gut histology—II. Histological aspects,” Journal of Rheumatology, vol. 22, no. 12, pp. 2273–2278, 1995. View at Scopus
  17. T. R. Orchard, H. Holt, L. Bradbury et al., “The prevalence, clinical features and association of HLA-B27 in sacroiliitis associated with established Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 29, no. 2, pp. 193–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Ø. Palm, B. Moum, A. Ongre, and J. T. Gran, “Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study),” Journal of Rheumatology, vol. 29, no. 3, pp. 511–515, 2002. View at Scopus
  19. V. Wright, “Seronegative polyarthritis: a unified concept,” Arthritis and Rheumatism, vol. 21, no. 6, pp. 619–633, 1978.
  20. R. E. Hammer, S. D. Maika, J. A. Richardson, J. P. Tang, and J. D. Taurog, “Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders,” Cell, vol. 63, no. 5, pp. 1099–1112, 1990. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Sany, F. Rosenberg, G. Panis, and H. Serre, “Unclassified HLA-B27 inflammatory rheumatic diseases: followup of 23 patients,” Arthritis and Rheumatism, vol. 23, no. 2, pp. 258–259, 1980. View at Scopus
  22. W. Mau, H. Zeidler, R. Mau et al., “Clinical features and prognosis of patients with possible ankylosing spondylitis. Results of a 10-year followup,” Journal of Rheumatology, vol. 15, no. 7, pp. 1109–1114, 1988. View at Scopus
  23. A. Calin, “Reiter’s syndrome—the clinical spectrum,” in The Spondyloarthritides, A. Calin and J. D. Taurog, Eds., pp. 41–57, Oxford University Press, Oxford, UK, 1998.
  24. D. Morris and R. D. Inman, “Reactive arthritis: developments and challenges in diagnosis and treatment,” Current Rheumatology Reports, vol. 14, no. 5, pp. 390–394, 2012.
  25. T. Rashid and A. Ebringer, “Ankylosing spondylitis is linked to Klebsiella—the evidence,” Clinical Rheumatology, vol. 26, no. 6, pp. 858–864, 2007.
  26. A. Ebringer, T. Rashid, and C. Wilson, “Ankylosing spondylitis, HLA-B27, Klebsiella and “Popper sequences”,” Current Rheumatology Reviews, vol. 7, no. 4, pp. 322–331, 2011.
  27. T. Rashid, A. Ebringer, H. Tiwana, and M. Fielder, “Crohn’s disease, Klebsiella and collagens: a prospect for the use of low-starch diet,” European Journal of Gastroenterology and Hepatology, vol. 21, no. 8, pp. 843–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Welsh, H. Avakian, and P. Cowling, “Ankylosing spondylitis, HLA-B27 and Klebsiella. I. Cross-reactivity studies with rabbit antisera,” British Journal of Experimental Pathology, vol. 61, no. 1, pp. 85–91, 1980. View at Scopus
  29. H. Avakian, J. Welsh, A. Ebringer, and C. C. Entwistle, “Ankylosing spondylitis, HLA-B27 and Klebsiella—II. Cross-reactivity studies with human tissue typing sera,” British Journal of Experimental Pathology, vol. 61, no. 1, pp. 92–96, 1980. View at Scopus
  30. C. G. Van Bohemen, F. C. Grumet, and H. C. Zanen, “Identification of HLA-B27M1 and M2 cross-reactive antigens in Klebsiella, shigella and yersinia,” Immunology, vol. 52, no. 4, pp. 607–610, 1984. View at Scopus
  31. M. Ogasawara, D. H. Kono, and D. T. Y. Yu, “Mimicry of human histocompatibility HLA-B27 antigens by Klebsiella pneumoniae,” Infection and Immunity, vol. 51, no. 3, pp. 901–908, 1986. View at Scopus
  32. P. L. Schwimmbeck, D. T. Y. Yu, and M. B. A. Oldstone, “Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter's syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease,” Journal of Experimental Medicine, vol. 166, no. 1, pp. 173–181, 1987. View at Scopus
  33. M. Fielder, S. J. Pirt, I. Tarpey et al., “Molecular mimicry and ankylosing spondylitis: possible role of a novel sequence in pullulanase of Klebsiella pneumoniae,” FEBS Letters, vol. 369, no. 2-3, pp. 243–248, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Rashid and A. Ebringer, “Detection of Klebsiella antibodies and HLA-B27 allelotypes could be used in the early diagnosis of ankylosing spondylitis with a potential for the use of “low starch diet” in the treatment,” Current Rheumatology Reviews, vol. 8, no. 2, pp. 109–119, 2012.
  35. O. Mäki-Ikola, M. Penttinen, R. Von Essen, C. Gripenberg-Lerche, H. Isomäki, and K. Granfors, “IgM, IgG and IgA class enterobacterial antibodies in serum and synovial fluid in patients with ankylosing spondylitis and rheumatoid arthritis,” British Journal of Rheumatology, vol. 36, no. 10, pp. 1051–1053, 1997. View at Scopus
  36. O. Mäki-Ikola, R. Hällgren, L. Kanerud, N. Feltelius, L. Knutsson, and K. Granfors, “Enhanced jejunal production of antibodies to Klebsiella and other Enterobacteria in patients with ankylosing spondylitis and rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 56, no. 7, pp. 421–425, 1997. View at Scopus
  37. C. Wilson, T. Rashid, H. Tiwana et al., “Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis,” Journal of Rheumatology, vol. 30, no. 5, pp. 972–978, 2003. View at Scopus
  38. G. Husby, N. Tsuchiya, P. L. Schwimmbeck et al., “Cross-reactive epitope with Klebsiella pneumoniae nitrogenase in articular tissue of HLA-B27+ patients with ankylosing spondylitis,” Arthritis and Rheumatism, vol. 32, no. 4, pp. 437–445, 1989. View at Scopus
  39. R. Ebringer, D. Cooke, and D. R. Cawdell, “Ankylosing spondylitis: Klebsiella and HL-A B27,” Rheumatology and Rehabilitation, vol. 16, no. 3, pp. 190–196, 1977. View at Scopus
  40. C. J. Eastmond, H. E. Willshaw, and S. E. P. Burgess, “Frequency of faecal Klebsiella aerogenes in patients with ankylosing spondylitis and controls with respect to individual features of the disease,” Annals of the Rheumatic Diseases, vol. 39, no. 2, pp. 118–123, 1980. View at Scopus
  41. T. Hunter, G. K. Harding, R. E. Kaprove, and M. L. Schroeder, “Fecal carriage of various Klebsiella and Enterobacter species in patients with active ankylosing spondylitis,” Arthritis and Rheumatism, vol. 24, no. 1, pp. 106–108, 1981. View at Scopus
  42. T. T. Kuberski, H. G. Morse, R. G. Rate, and M. D. Bonnell, “Increased recovery of Klebsiella from the gastrointestinal tract of Reiter's syndrome and ankylosing spondylitis patients,” British Journal of Rheumatology, vol. 22, no. 4, pp. 85–90, 1983. View at Scopus
  43. E. Van Kregten, O. Huber-Bruning, J. P. Vandenbroucke, and J. M. N. Willers, “No conclusive evidence of an epidemiological relation between Klebsiella and ankylosing spondylitis,” Journal of Rheumatology, vol. 18, no. 3, pp. 384–388, 1991. View at Scopus
  44. G. W. Smith, C. C. Blackwell, and G. Nuki, “Faecal flora in spondyloarthropathy,” British Journal of Rheumatology, vol. 36, no. 8, pp. 850–854, 1997. View at Scopus
  45. O. Mäki-Ikola, M. Leirisalo-Repo, U. Turunen, and K. Granfors, “Association of gut inflammation with increased serum IgA class Klebsiella antibody concentrations in patients with axial ankylosing spondylitis (AS): implication for different aetiopathogenetic mechanisms for axial and peripheral AS?” Annals of the Rheumatic Diseases, vol. 56, no. 3, pp. 180–183, 1997. View at Scopus
  46. L. van Praet, F. E. van den Bosch, P. Jacques, et al., “Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model,” Annals of the Rheumatic Diseases, vol. 72, no. 3, pp. 414–417, 2013.
  47. G. Hascelik, B. Oz, N. Olmez et al., “Association of macroscopic gut inflammation with disease activity, functional status and quality of life in ankylosing spondylitis,” Rheumatology International, vol. 29, no. 7, pp. 755–758, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Jacques, D. Elewaut, and H. Mielants, “Interactions between gut inflammation and arthritis/spondylitis,” Current Opinion in Rheumatology, vol. 22, no. 4, pp. 368–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. E. M. Veys and M. Van Laere, “Serum IgG, IgM, and IgA levels in ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 32, no. 6, pp. 493–496, 1973. View at Scopus
  50. A. Collado, R. Sanmarti, C. Serra et al., “Serum levels of secretory IgA in ankylosing spondylitis,” Scandinavian Journal of Rheumatology, vol. 20, no. 3, pp. 153–158, 1991. View at Scopus
  51. M. Calguneri, L. Swinburne, R. Shinebaum, E. M. Cooke, and V. Wright, “Secretory IgA: immune defence pattern in ankylosing spondylitis and Klebsiella,” Annals of the Rheumatic Diseases, vol. 40, no. 6, pp. 600–604, 1981. View at Scopus
  52. A. K. Trull and G. S. Panayi, “Serum and secretory IgA immune response to Klebsiella pneumoniae in ankylosing spondylitis,” Clinical Rheumatology, vol. 2, no. 4, pp. 331–337, 1983. View at Publisher · View at Google Scholar · View at Scopus
  53. O. Mai-Ikola, M. Nissila, K. Lehtinen, M. Leirisalo-Repo, and K. Granfors, “IgA1 and IgA2 subclass antibodies against Klebsiella pneumoniae in the sera of patients with peripheral and axial types of ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 54, no. 8, pp. 631–635, 1995. View at Scopus
  54. Y. Tani, H. Sato, N. Tanaka, K. Mori, Y. Doida, and S. Hukuda, “Serum IgA1 and IgA2 subclass antibodies against collagens in patients with ankylosing spondylitis,” Scandinavian Journal of Rheumatology, vol. 26, no. 5, pp. 380–382, 1997. View at Scopus
  55. E. Höring, D. Göpfert, G. Schröter, and U. von Gaisberg, “Frequency and spectrum of microorganisms isolated from biopsy specimens in chronic colitis,” Endoscopy, vol. 23, no. 6, pp. 325–327, 1991.
  56. A. Plessier, J. Cosnes, J. P. Gendre, and L. Beaugerie, “Intercurrent Klebsiella oxytoca colitis in a patient with Crohn's disease,” Gastroenterologie Clinique et Biologique, vol. 26, no. 8-9, pp. 799–800, 2002. View at Scopus
  57. J. P. Ibbotson, P. E. Pease, and R. A. Allan, “Serological studies in Crohn’s disease,” European Journal of Clinical Microbiology, vol. 6, no. 3, pp. 286–290, 1987.
  58. R. Cooper, S. M. Fraser, R. D. Sturrock, and C. G. Gemmell, “Raised titres of anti-Klebsiella IgA in ankylosing spondylitis, rheumatoid arthritis, and inflammatory bowel disease,” British Medical Journal, vol. 296, no. 6634, pp. 1432–1434, 1988. View at Scopus
  59. S. O'Mahony, N. Anderson, G. Nuki, and A. Ferguson, “Systemic and mucosal antibodies to Klebsiella in patients with ankylosing spondylitis and Crohn's disease,” Annals of the Rheumatic Diseases, vol. 51, no. 12, pp. 1296–1300, 1992. View at Scopus
  60. H. Tiwana, C. Wilson, R. S. Walmsley et al., “Antibody responses to gut bacteria in ankylosing spondylitis, rheumatoid arthritis, Crohn's disease and ulcerative colitis,” Rheumatology International, vol. 17, no. 1, pp. 11–16, 1997. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Tiwana, R. S. Walmsley, C. Wilson et al., “Characterization of the humoral immune response to Klebsiella species in inflammatory bowel disease and ankylosing spondylitis,” British Journal of Rheumatology, vol. 37, no. 5, pp. 525–531, 1998. View at Scopus
  62. H. Tiwana, R. S. Natt, R. Benitez-Brito et al., “Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn's disease and ankylosing spondylitis,” Rheumatology, vol. 40, no. 1, pp. 15–23, 2001. View at Scopus
  63. N. Paeng, A. Morikawa, Y. Kato et al., “Experimental murine model for autoimmune enterocolitis using Klebsiella pneumoniae O3 lipopolysaccharide as a potent immunological adjuvant,” Microbiology and Immunology, vol. 43, no. 1, pp. 45–52, 1999. View at Scopus
  64. K. Takahashi, Y. Kato, T. Sugiyama et al., “Production of murine collagen-induced arthritis using Klebsiella pneumoniae O3 lipopolysaccharide as a potent immunological adjuvant,” Microbiology and Immunology, vol. 43, no. 8, pp. 795–801, 1999. View at Scopus
  65. T. Rashid and A. Ebringer, “Autoimmunity in rheumatic diseases is induced by microbial infections via cross-reactivity or molecular mimicry,” Autoimmune Diseases, vol. 2012, Article ID 539282, 9 pages, 2012. View at Publisher · View at Google Scholar
  66. R. Tandon, M. Sharma, and Y. Chandrashekhar, “Revisiting the pathogenesis of rheumatic fever and carditis,” Nature Reviews, vol. 10, no. 3, pp. 171–177, 2013.
  67. D. S. Smyk, E. I. Rigopoulou, and D. P. Boghanos, “Potential roles for infectious agents in the pathophysiology of primary biliary cirrhosis: what’s new?” Current Infectious Disease Reports, vol. 15, no. 1, pp. 14–24, 2013.
  68. A. Cauli, G. Dessole, A. Vacca, et al., “Susceptibility to ankylosing spondylitis but not disease outcome is influenced by the level of HLA-B27 expression, which shows moderated variability over time,” Scandinavian Journal of Rheumatology, vol. 41, no. 3, pp. 214–218, 2012.
  69. I. H. Anderson, A. S. Levine, and M. D. Levitt, “Incomplete absorption of the carbohydrate in all-purpose wheat flour,” New England Journal of Medicine, vol. 304, no. 15, pp. 891–892, 1981. View at Scopus
  70. A. M. Stephen, “Starch and dietary fibre: their physiological and epidemiological interrelationships,” Canadian Journal of Physiology and Pharmacology, vol. 69, no. 1, pp. 116–120, 1991. View at Scopus
  71. B. Kleessen, G. Stoof, J. Proll, D. Schmiedl, J. Noack, and M. Blaut, “Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats,” Journal of Animal Science, vol. 75, no. 9, pp. 2453–2462, 1997. View at Scopus
  72. Q. Lin, B. Huang, N. Zhang, et al., “Functional interactions between starch synthase III and Isoamylase-type starch-debranching enzyme in maize endosperm,” Plant Physiology, vol. 158, no. 2, pp. 679–692, 2012.
  73. H. Sun, P. Zhao, X. Ge, et al., “Recent advances in microbial raw starch degrading enzymes,” Applied Biochemistry and Biotechnology, vol. 160, no. 4, pp. 988–1003, 2010.
  74. A. P. Pugsley, “The complete general secretory pathway in gram-negative bacteria,” Microbiological Reviews, vol. 57, no. 1, pp. 50–108, 1993. View at Scopus
  75. H. N. Englyst and J. H. Cummings, “Digestion of the polysaccharides of some cereal foods in the human small intestine,” American Journal of Clinical Nutrition, vol. 42, no. 5, pp. 778–787, 1985. View at Scopus
  76. X. Wang, P. L. Conway, I. L. Brown, and A. J. Evans, “In vitro utilization of amylopectin and high-amylose maize (amylomaize) starch granules by human colonic bacteria,” Applied and Environmental Microbiology, vol. 65, no. 11, pp. 4848–4854, 1999. View at Scopus
  77. S. M. Finegold, V. L. Sutter, and P. T. Sugihara, “Fecal microbial flora in Seventh Day Adventist populations and control subjects,” American Journal of Clinical Nutrition, vol. 30, no. 11, pp. 1781–1792, 1977. View at Scopus
  78. A. Ebringer, M. Baines, M. Childerstone, and M. Ghuloom, “Etiopathogenesis of ankylosing spondylitis and the cross-tolerance hypothesis,” in Advances in Inflammation Research-the Spondyloarthropathies, M. Ziff and S. B. Cohen, Eds., pp. 101–128, Raven Press, New York, NY, USA, 1985.
  79. M. Dougados, J. Braun, S. Szanto, et al., “Nonsteroidal antiinflammatory drug intake according to the Assessment of SpondyloArthritis International Society Score in clinical trials evaluating tumor necrosis factor blockers: example of etanercept in advance ankylosing spondylitis,” Arthritis Care & Research, vol. 64, no. 2, pp. 290–294, 2012.
  80. C. Randall, J. Vizuete, G. Wendorf, B. Avvar, and G. Constantine, “Current and emerging strategies in the management of Crohn’s disease,” Best Practice & Research, vol. 26, no. 5, pp. 601–610, 2012.
  81. O. H. Nielsen, J. T. Bjerrum, H. Herfarth, and G. Rogler, “Recent advances using immunomodulators for inflammatory bowel disease,” Journal of Clinical Pharmacology, vol. 53, no. 6, pp. 575–588, 2013.
  82. A. Mir Subias, S. Garcia-Lopez, B. Sebastian Torres, L. Ollero Domenche, A. Garcia Gamez, and F. Gomollon, “Multiple sclerosis as an adverse effect of anti-tumor necrosis factor agents: an infrequent but important complication of infliximab in Crohn’s disease,” Gastroenterology & Hepatology, vol. 36, no. 2, pp. 81–85, 2013.
  83. N. I. McNeil, S. Bingham, and T. J. Cole, “Diet and health of people with an ileostomy. 2. Ileostomy function and nutritional state,” British Journal of Nutrition, vol. 47, no. 3, pp. 407–415, 1982. View at Scopus
  84. A. Tragnone, D. Valpiani, F. Miglio et al., “Dietary habits as risk factors for inflammatory bowel disease,” European Journal of Gastroenterology and Hepatology, vol. 7, no. 1, pp. 47–51, 1995. View at Scopus
  85. H. Asakura, K. Suzuki, T. Kitahora, and T. Morizane, “Is there a link between food and intestinal microbes and the occurrence of Crohn's disease and ulcerative colitis?” Journal of Gastroenterology and Hepatology, vol. 23, no. 12, pp. 1794–1801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Ebringer and C. Wilson, “The use of a low starch diet in the treatment of patients suffering from ankylosing spondylitis,” Clinical Rheumatology, vol. 15, no. 1, pp. 62–66, 1996. View at Publisher · View at Google Scholar · View at Scopus