About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 917068, 15 pages
http://dx.doi.org/10.1155/2013/917068
Research Article

Respiratory-Related Hospitalizations following Prophylaxis in the Canadian Registry for Palivizumab (2005–2012) Compared to Other International Registries

1Department of Pediatrics, McMaster University, Hamilton, ON, Canada L8S 4K1
2McMaster Children’s Hospital, 1280 Main Street West, Room HSC-3A, Hamilton, ON, Canada L8S 4K1
3Department of Pediatrics, University of Calgary, Calgary, AB, Canada T3B 6A8
4Medical Outcomes and Research in Economics (MORE) Research Group, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5

Received 25 February 2013; Accepted 17 April 2013

Academic Editor: Roberto Burioni

Copyright © 2013 Bosco Paes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Mação, A. Dias, L. Azevedo, et al., “Acute bronchiolitis: a prospective study,” Acta Médica Portuguesa, vol. 24, supplement 2, pp. 407–412, 2011.
  2. F. A. Khamis, M. F. Al-Kobaisi, W. S. Al-Areimi, et al., “Epidemiology of respiratory virus infections among infants and young children admitted to hospital in Oman,” Journal of Medical Virology, vol. 84, no. 8, pp. 1323–1329, 2012.
  3. H. C. Moore, N. de Klerk, A. D. Keil, et al., “Use of data linkage to investigate the aetiology of acute lower respiratory infection hospitalisations in children,” Journal of Paediatrics and Child Health, vol. 48, no. 6, pp. 520–528, 2012.
  4. Y. Jin, R. F. Zhang, Z. P. Xie, et al., “Newly identified respiratory viruses associated with acute lower respiratory tract infections in children in Lanzou, China, from 2006 to 2009,” Clinical Microbiology and Infection, vol. 18, no. 1, pp. 74–80, 2012.
  5. W. Sánchez-Yebra, J. A. Ávila-Carrillo, F. Giménez-Sánchez, et al., “Viral agents causing lower respiratory tract infections in hospitalized children: evaluation of the Speed-Oligo RSV assay for the detection of respiratory syncytial virus,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 31, no. 3, pp. 243–250, 2012.
  6. C. C. Sung, H. Chi, N. C. Chiu et al., “Viral etiology of acute lower respiratory tract infections in hospitalized young children in Northern Taiwan,” Journal of Microbiology, Immunology and Infection, vol. 44, no. 3, pp. 184–190, 2012. View at Scopus
  7. L. J. Stockman, A. T. Curns, L. J. Anderson, et al., “Respiratory syncytial virus-associated hospitalizations among infants and young children in the United States, 1997–2006,” The Pediatric Infectious Disease Journal, vol. 31, no. 1, pp. 5–9, 2012.
  8. C. B. Hall, “The burgeoning burden of respiratory syncytial virus among children,” Infectious Disorders and Drug Targets, vol. 12, no. 2, pp. 92–97, 2012.
  9. C. B. Hall, G. A. Weinberg, M. K. Iwane, et al., “The burden of respiratory syncytial virus infection in young children,” The New England Journal of Medicine, vol. 360, no. 6, pp. 588–598, 2009.
  10. H. Nair, D. J. Nokes, B. D. Gessner et al., “Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis,” The Lancet, vol. 375, no. 9725, pp. 1545–1555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Welliver Sr., P. A. Checchia, J. H. Bauman, A. W. Fernandes, P. J. Mahadevia, and C. B. Hall, “Fatality rates in published reports of RSV hospitalizations among high-risk and otherwise healthy children,” Current Medical Research and Opinion, vol. 26, no. 9, pp. 2175–2181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Shefali-Patel, M. A. Paris, F. Watson, et al., “RSV hospitalisation and healthcare utilisation in moderately prematurely born infants,” European Journal of Pediatrics, vol. 171, no. 7, pp. 1055–1061, 2012.
  13. G. Ranmuthugala, L. Brown, and B. A. Lidbury, “Respiratory syncytial virus—the unrecognised cause of health and economic burden among young children in Australia,” Communicable Diseases Intelligence, vol. 35, no. 2, pp. 177–184, 2011.
  14. S. Johnson, C. Oliver, G. A. Prince et al., “Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus,” Journal of Infectious Diseases, vol. 176, no. 5, pp. 1215–1224, 1997. View at Scopus
  15. IMpact-RSV Study Group, “Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants,” Pediatrics, vol. 102, no. 3 I, pp. 531–537, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. T. F. Feltes, A. K. Cabalka, H. C. Meissner et al., “Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease,” Journal of Pediatrics, vol. 143, no. 4, pp. 532–540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. E. A. F. Simoes and J. R. Groothuis, “Respiratory syncytial virus prophylaxis—the story so far,” Respiratory Medicine B, vol. 96, supplement 2, pp. S15–S24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. A. Simoes, “Immunoprophylaxis of respiratory syncytial virus: global experience,” Respiratory Research, vol. 3, supplement 1, pp. S26–S33, 2002.
  19. J. L. Robinson, “Canadian Pediatric Society Infectious Diseases and Immunization Committee. Preventing respiratory syncytial virus infections,” Paediatrics and Child Health, vol. 16, no. 8, pp. 488–490, 2011.
  20. B. Resch, A. Berger, G. Bernert, et al., “Konsensuspapier zur prophylaxe der RSV-infektion mit palivizumab und post-RSV-atemwegserkrankung,” Monatsschrift Kinderheilkunde, vol. 156, pp. 381–383, 2008.
  21. J. Figueras-Aloy and X. Carbonell-Estrany, “Recommendations for the use of palivizumab in the prevention of respiratory syncytial virus infection in late preterm infants (32(1) to 35(0) weeks of gestation),” Anales de Pediatria, vol. 73, no. 2, pp. 98.e1–98.e4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. American Academy of Pediatrics, “From the American Academy of Pediatrics: policy statements—modified recommendations for use of palivizumab for prevention of respiratory syncytial virus infections,” Pediatrics, vol. 124, pp. 1694–1701, 2009.
  23. J. S. Sampalis, J. Langley, X. Carbonell-Estrany et al., “Development and validation of a risk scoring tool to predict respiratory syncytial virus hospitalization in premature infants born at 33 through 35 completed weeks of gestation,” Medical Decision Making, vol. 28, no. 4, pp. 471–480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Sáez-Llorens, M. T. Moreno, O. Ramilo, P. J. Sánchez, F. H. Top, and E. M. Connor, “Safety and pharmacokinetics of palivizumab therapy in children hospitalized with respiratoy syncytial virus infection,” The Pediatric Infectious Disease Journal, vol. 23, no. 8, pp. 707–712, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. N. S. Subramanian, L. E. Weisman, T. Rhodes et al., “Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia,” The Pediatric Infectious Disease Journal, vol. 17, no. 2, pp. 110–115, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. G. J. Robbie, L. Zhao, J. Mondick, et al., “Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 9, pp. 4927–4936, 2012.
  27. B. J. Law, J. M. Langley, U. Allen et al., “The pediatric investigators collaborative network on infections in Canada study of predictors of hospitalization for respiratory syncytial virus infection for infants born at 33 through 35 completed weeks of gestation,” The Pediatric Infectious Disease Journal, vol. 23, no. 9, pp. 806–814, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Parnes, J. Guillermin, R. Habersang, et al., “Palivizumab prophylaxis of respiratory syncytial virus disease in 2000-2001: results from the palivizumab outcomes registry,” Pediatric Pulmonology, vol. 35, no. 6, pp. 484–489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. Statistics Canada, “Table 051-0005—estimates of population, Canada, provinces and territories, quarterly (persons),” in: CANSIM (database), ed. 2012.
  30. A. G. Winterstein, E. Eworuke, D. Xu, et al., “Palivizumab immunoprophylaxis effectiveness in children with cystic fibrosis,” Pediatric Pulmonology, 2012. View at Publisher · View at Google Scholar
  31. B. Paes, I. Mitchell, A. Li, et al., “Respiratory hospitalizations and respiratory syncytial virus prophylaxis in special populations,” European Journal of Pediatrics, vol. 171, no. 5, pp. 833–841, 2012.
  32. B. Paes, I. Mitchell, A. Li, et al., “A comparative study of respiratory syncytial virus (RSV) prophylaxis in premature infants within the Canadian Registry of Palivizumab (CARESS),” European Journal of Clinical Microbiology & Infectious Diseases, vol. 31, no. 10, pp. 2703–2711, 2012.
  33. A. Simon, H. Nowak, and R. Sterz, “Use of palivizumab in Germany: data from 2002–2007,” Klinische Padiatrie, vol. 223, no. 5, pp. 292–298, 2011.
  34. I. Mitchell, B. A. Paes, A. Li, et al., “CARESS: the Canadian registry of palivizumab,” The Pediatric Infectious Disease Journal, vol. 30, no. 8, pp. 651–655, 2011.
  35. M. Frogel, C. Nerwen, M. Boron et al., “Improved outcomes with home-based administration of palivizumab: results from the 2000–2004 palivizumab outcomes registry,” The Pediatric Infectious Disease Journal, vol. 27, no. 10, pp. 870–873, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. A. Cohen, R. Zanni, A. Cohen, M. Harrington, P. Vanveldhuisen, and M. L. Boron, “Palivizumab use in subjects with congenital heart disease: results from the 2000–2004 Palivizumab outcomes registry,” Pediatric Cardiology, vol. 29, no. 2, pp. 382–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Frogel, C. Nerwen, A. Cohen, P. VanVeldhuisen, M. Harrington, and M. Boron, “Prevention of hospitalization due to respiratory syncytial virus: results from the Palivizumab outcomes registry,” Journal of Perinatology, vol. 28, no. 7, pp. 511–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. J. R. Romero, “Palivizumab prophylaxis of respiratory syncytial virus disease from 1998 to 2002: results from four years of palivizumab usage,” The Pediatric Infectious Disease Journal, vol. 22, supplement 2, pp. S46–S54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Pedraz, X. Carbonell-Estrany, J. Figueras-Aloy, and J. Quero, “Effect of palivizumab prophylaxis in decreasing respiratory syncytial virus hospitalizations in premature infants,” The Pediatric Infectious Disease Journal, vol. 22, no. 9, pp. 823–827, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. I. Oh, K. L. Lanctot, A. Yoon, et al., “Palivizumab prophylaxis for respiratory syncytial virus in Canada: utilization and outcomes,” The Pediatric Infectious Disease Journal, vol. 21, no. 6, pp. 512–518, 2002.
  41. T. Lacaze-Masmonteil, J. C. Rozé, and B. Fauroux, “Incidence of respiratory syncytial virus-related hospitalizations in high-risk children: follow-up of a national cohort of infants treated with Palivizumab as RSV prophylaxis,” Pediatric Pulmonology, vol. 34, no. 3, pp. 181–188, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. H. Cohen, M. L. Boron, and C. Dingivan, “A phase IV study of the safety of synagis (Palivizumab) for prophylaxis of respiratory syncytial virus disease in children with cystic fibrosis,” in Proceedings of the International Conference of the American Thoracic Society, Abstract A-53, San Diego, Calif, USA, May 2005.
  43. P. Manzoni, B. Paes, B. Resch, et al., “High risk for RSV bronchiolitis in late preterms and selected infants affected by rare disorders: a dilemma of specific prevention,” Early Human Development, vol. 88, supplement 2, pp. 34–41, 2012.
  44. B. Resch, P. Manzoni, and M. Lanari, “Severe respiratory syncytial virus (RSV) infection in infants with neuromuscular diseases and immune deficiency syndromes,” Paediatric Respiratory Reviews, vol. 10, no. 3, pp. 148–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Elnazir, O. Oni, T. Hassan, et al., “Does prophylaxis with palivizumab reduce hospitalisation rates for respiratory-syncytial-virus-related infection in cystic fibrosis children less than 2 years of age?” Journal of Paediatrics and Child Health, vol. 48, no. 11, pp. 1033–1108, 2012.
  46. P. Zachariah, M. Ruttenber, and E. A. Simões, “Down syndrome and hospitalizations due to respiratory syncytial virus: a population-based study,” Journal of Pediatrics, vol. 160, no. 5, pp. 827.e1–831.e1, 2012.
  47. B. L. P. Bloemers, A. M. van Furth, M. E. Weijerman et al., “Down syndrome: a novel risk factor for respiratory syncytial virus bronchiolitis—a prospective birth-cohort study,” Pediatrics, vol. 120, no. 4, pp. e1076–e1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Thorburn, M. Eisenhut, and A. Riordan, “Mortality and morbidity of nosocomial respiratory syncytial virus (RSV) infection in ventilated children—a ten year perspective,” Minerva Anestesiologica, vol. 78, no. 7, p. 782, 2012.
  49. K. Thorburn, “Pre-existing disease is associated with a significantly higher risk of death in severe respiratory syncytial virus infection,” Archives of Disease in Childhood, vol. 94, no. 2, pp. 99–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Singleton, L. Dooley, D. Bruden, S. Raelson, and J. C. Butler, “Impact of palivizumab prophylaxis on respiratory syncytial virus hospitalizations in high risk Alaska Native infants,” The Pediatric Infectious Disease Journal, vol. 22, no. 6, pp. 540–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. N. T. Petersen, N. Hoiby, and C. H. Mordhorst, “Respiratory infections in cystic fibrosis patients caused by virus, chlamydia and mycoplasma—possible synergism with Pseudomonas aeruginosa,” Acta Paediatrica Scandinavica, vol. 70, no. 5, pp. 623–628, 1981. View at Scopus
  52. B. Paes and P. Manzoni, “Special populations: do we need evidence from randomized controlled trials to support the need for respiratory syncytial virus prophylaxis?” Early Human Development, vol. 87, supplement 1, pp. S55–S58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Giusti, “North american synagis prophylaxis survey,” Pediatric Pulmonology, vol. 44, no. 1, pp. 96–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Borowitz, K. A. Robinson, M. Rosenfeld et al., “Cystic fibrosis foundation evidence-based guidelines for management of infants with cystic fibrosis,” The Journal of Pediatrics, vol. 155, supplement 6, pp. S73–S93, 2009. View at Scopus
  55. K. A. Robinson, I. J. Saldanha, and N. A. McKoy, “Management of infants with cystic fibrosis: a summary of the evidence for the cystic fibrosis foundation working group on care of infants with cystic fibrosis,” The Journal of Pediatrics, vol. 155, supplement 6, pp. S94–S105, 2009. View at Scopus
  56. C. Sommer, B. Resch, and E. A. Simões, “Risk factors for severe respiratory syncytial virus lower respiratory tract infection,” The Open Microbiology Journal, vol. 5, pp. 144–154, 2011.
  57. G. F. Langley and L. J. Anderson, “Epidemiology and prevention of respiratory syncytial virus infections among infants and young children,” The Pediatric Infectious Disease Journal, vol. 30, no. 6, pp. 510–517, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Banerji, D. Greenberg, L. F. White et al., “Risk factors and viruses associated with hospitalization due to lower respiratory tract infections in canadian inuit children: a case-control study,” The Pediatric Infectious Disease Journal, vol. 28, no. 8, pp. 697–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. R. J. Singleton, D. Bruden, L. R. Bulkow, G. Varney, and J. C. Butler, “Decline in respiratory syncytial virus hospitalizations in a region with high hospitalization rates and prolonged season,” The Pediatric Infectious Disease Journal, vol. 25, no. 12, pp. 1116–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Dede, D. Isaacs, P. J. Torzillo et al., “Respiratory syncytial virus infections in Central Australia,” Journal of Paediatrics and Child Health, vol. 46, no. 1-2, pp. 35–39, 2010. View at Publisher · View at Google Scholar · View at Scopus