About this Journal Submit a Manuscript Table of Contents
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 965841, 7 pages
http://dx.doi.org/10.1155/2013/965841
Review Article

N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

1Universidade Federal do Amazonas, Avenida General Rodrigo Octávio Jordão Ramos 3000, Campus Universitário, Coroado I, 69077-000 Manaus, AM, Brazil
2Instituto Leônidas e Maria Deane-Fiocruz, Rua Teresina 476, 69057-070 Manaus, AM, Brazil

Received 24 April 2013; Accepted 14 August 2013

Academic Editor: Wuelton Marcelo Monteiro

Copyright © 2013 Fernanda G. Versiani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. V. Lacerda, M. P. Mourão, M. A. Alexandre et al., “Understanding the clinical spectrum of complicated Plasmodium vivax malaria: a systematic review on the contributions of the Brazilian literature,” Malaria Journal, vol. 11, article 12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Mueller, M. R. Galinski, J. K. Baird et al., “Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite,” The Lancet Infectious Diseases, vol. 9, no. 9, pp. 555–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. N. Price, N. M. Douglas, and N. M. Anstey, “New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance,” Current Opinion in Infectious Diseases, vol. 22, no. 5, pp. 430–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Tjitra, N. M. Anstey, P. Sugiarto et al., “Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia,” PLoS Medicine, vol. 5, no. 6, pp. 0890–0899, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. J. Rogerson and R. Carter, “Severe vivax malaria: newly recognised or rediscovered?” PLoS Medicine, vol. 5, no. 6, pp. 0875–0877, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. F. T. Costa, S. C. Lopes, L. Albrecht et al., “On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field,” International Journal for Parasitology, vol. 42, no. 12, pp. 1099–1105, 2012.
  7. B. O. Carvalho, S. C. P. Lopes, P. A. Nogueira et al., “On the cytoadhesion of Plasmodium vivax-infected erythrocytes,” Journal of Infectious Diseases, vol. 202, no. 4, pp. 638–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Lu, B. Wang, J. Cao et al., “Prevalence of drug resistance-associated gene mutations in Plasmodium vivax in Central China,” The Korean Journal of Parasitology, vol. 50, no. 4, pp. 379–384, 2012.
  9. S. Garg, V. Saxena, V. Lumb et al., “Novel mutations in the antifolate drug resistance marker genes among Plasmodium vivax isolates exhibiting severe manifestations,” Experimental Parasitology, vol. 132, no. 4, pp. 410–416, 2012.
  10. C. V.-R. Rdel, M. S. Bastos, M. J. Menezes, P. Orjuela-Sanchez, and M. U. Ferreira, “Single-nucleotide polymorphism and copy number variation of the multidrug resistance-1 locus of Plasmodium vivax: local and global patterns,” The American Journal of Tropical Medicine and Hygiene, vol. 87, no. 5, pp. 813–821, 2012.
  11. D. H. Kerlin, K. Boyce, J. Marfurt et al., “An analytical method for assessing stage-specific drug activity in Plasmodium vivax malaria: implications for ex vivo drug susceptibility testing,” PLOS Neglected Tropical Diseases, vol. 6, no. 8, Article ID e1772, 2012.
  12. J. Marfurt, F. Chalfein, P. Prayoga et al., “Comparative ex vivo activity of novel endoperoxides in multidrug-resistant Plasmodium falciparum and P. vivax,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 10, pp. 5258–5263, 2012.
  13. A. C. Aguiar, M. Santos Rde, F. J. Figueiredo et al., “Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites,” PLoS One, vol. 7, no. 5, Article ID e37259, 2012.
  14. J. K. Baird, “Resistance to chloroquine unhinges vivax malaria therapeutics,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 5, pp. 1827–1830, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. E. Gama, M. V. G. Lacerda, C. T. Daniel-Ribeiro, and M. D. F. Ferreira-da-Cruz, “Chemoresistance of Plasmodium falciparum and Plasmodium vivax parasites in Brazil: consequences on disease morbidity and control,” Memorias do Instituto Oswaldo Cruz, vol. 106, no. 1, pp. 159–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Alexandre, C. O. Ferreira, A. M. Siqueira et al., “Severe Plasmodium vivax malaria, Brazilian Amazon,” Emerging Infectious Diseases, vol. 16, no. 10, pp. 1611–1614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Galinski and J. W. Barnwell, “Plasmodium vivax: who cares?” Malaria Journal, vol. 7, no. 1, article S9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Herrera, G. Corradin, and M. Arévalo-Herrera, “An update on the search for a Plasmodium vivax vaccine,” Trends in Parasitology, vol. 23, no. 3, pp. 122–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. D. Weedall and D. J. Conway, “Detecting signatures of balancing selection to identify targets of anti-parasite immunity,” Trends in Parasitology, vol. 26, no. 7, pp. 363–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. L. Takala, D. Coulibaly, M. A. Thera et al., “Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development,” Science translational medicine, vol. 1, no. 2, p. 2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Mueller, V. S. Moorthy, G. V. Brown, P. G. Smith, P. Alonso, and B. Genton, “Guidance on the evaluation of Plasmodium vivax vaccines in populations exposed to natural infection,” Vaccine, vol. 27, no. 41, pp. 5633–5643, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Cheesman, E. O'Mahony, S. Pattaradilokrat, K. Degnan, S. Knott, and R. Carter, “A single parasite gene determines strain-specific protective immunity against malaria: the role of the merozoite surface protein I,” International Journal for Parasitology, vol. 40, no. 8, pp. 951–961, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Arévalo-Herrera and S. Herrera, “Plasmodium vivax malaria vaccine development,” Molecular Immunology, vol. 38, no. 6, pp. 443–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Cheng, Y. Wang, D. Ito, et al., “The Plasmodium vivax merozoite surface protein 1 paralog is a novel erythrocyte-binding ligand of P. vivax,” Infect Immun, vol. 81, no. 5, pp. 1585–1595, 2013.
  25. S. Sachdeva, G. Ahmad, P. Malhotra, P. Mukherjee, and V. S. Chauhan, “Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19- and 42-kilodalton fragments expressed in Escherichia coli,” Infection and Immunity, vol. 72, no. 10, pp. 5775–5782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Y. Bargieri, D. S. Rosa, M. A. S. Lasaro, L. C. S. Ferreira, I. S. Soares, and M. M. Rodrigues, “Adjuvant requirement for successful immunization with recombinant derivatives of Plasmodium vivax merozoite surface protein-1 delivered via the intranasal route,” Memorias do Instituto Oswaldo Cruz, vol. 102, no. 3, pp. 313–317, 2007. View at Scopus
  27. D. Y. Bargieri, D. S. Rosa, C. J. M. Braga et al., “New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin,” Vaccine, vol. 26, no. 48, pp. 6132–6142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Parween, P. K. Gupta, and V. S. Chauhan, “Induction of humoral immune response against PfMSP-119 and PvMSP-119 using gold nanoparticles along with alum,” Vaccine, vol. 29, no. 13, pp. 2451–2460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Yang, W. E. Collins, J. S. Sullivan, D. C. Kaslow, L. Xiao, and A. A. Lal, “Partial protection against Plasmodium vivax blood-stage infection in Saimiri monkeys by immunization with a recombinant C-terminal fragment of merozoite surface protein 1 in block copolymer adjuvant,” Infection and Immunity, vol. 67, no. 1, pp. 342–349, 1999. View at Scopus
  30. S. Dutta, D. C. Kaushal, L. A. Ware et al., “Merozoite surface protein 1 of Plasmodium vivax induces a protective response against Plasmodium cynomolgi challenge in rhesus monkeys,” Infection and Immunity, vol. 73, no. 9, pp. 5936–5944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Valderrama-Aguirre, G. Quintero, A. Gómez et al., “Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 Pv200L: a potential malaria vaccine subunit,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 5, pp. 16–24, 2005. View at Scopus
  32. R. D. Ellis, Y. Wu, L. B. Martin, et al., “Phase 1 study in malaria naive adults of BSAM2/Alhydrogel(R)+CPG, 7909, a blood stage vaccine against P. falciparum malaria,” PLoS One, vol. 7, no. 10, Article ID e46094, 2012.
  33. E. S. Bergmann-Leitner, E. H. Duncan, R. M. Mease, and E. Angov, “Impact of pre-existing MSP1(42)-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine,” Malaria Journal, vol. 11, p. 315, 2012.
  34. D. K. Moss, E. J. Remarque, B. W. Faber et al., “Plasmodium falciparum 19-kilodalton merozoite surface protein 1 (MSP1)-specific antibodies that interfere with parasite growth in vitro can inhibit MSP1 processing, merozoite invasion, and intracellular parasite development,” Infection and Immunity, vol. 80, no. 3, pp. 1280–1287, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. S. H. Sheehy, C. J. A. Duncan, S. C. Elias et al., “Phase Ia clinical evaluation of the Plasmodium falciparum blood-stage antigen MSP1 in ChAd63 and MVA vaccine vectors,” Molecular Therapy, vol. 19, no. 12, pp. 2269–2276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Malkin, C. A. Long, A. W. Stowers et al., “Phase 1 study of two merozoite surface protein 1 (MSP142) vaccines for Plasmodium falciparum malaria,” PLoS Clinical Trials, vol. 2, no. 4, article e12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. R. Withers, D. McKinney, B. R. Ogutu et al., “Safety and reactogenicity of an MSP-1 malaria vaccine candidate: a randomized phase Ib dose-escalation trial in Kenyan children,” PLOS Clinical Trials, vol. 1, no. 7, article e32, 2006.
  38. M. S. Bastos, M. Da Silva-Nunes, R. S. Malafronte et al., “Antigenic polymorphism and naturally acquired antibodies to Plasmodium vivax merozoite surface protein 1 in rural Amazonians,” Clinical and Vaccine Immunology, vol. 14, no. 10, pp. 1249–1259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. H. A. Del Portillo, S. Longacre, E. Khouri, and P. H. David, “Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 9, pp. 4030–4034, 1991. View at Scopus
  40. C. Putaporntip, S. Jongwutiwes, N. Sakihama et al., “Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16348–16353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. M. E. M. Almeida, F. G. Versiani, L. A. Soares, et al., “Repertoire of proteins of PvMSP1 Block 2 able to broaden protective and serotype-specific IgG3 antibodies,” In press.
  42. F. G. Versiani, M. E. M. Almeida, C. M. Gisely, et al., “High levels of IgG3 anti ICB2-5 in Plasmodium vivax-infected individuals who did not develop symptoms,” Malaria Journal, vol. 12, article 294, 2013. View at Publisher · View at Google Scholar
  43. K. Koussis, C. Withers-Martinez, S. Yeoh et al., “A multifunctional serine protease primes the malaria parasite for red blood cell invasion,” EMBO Journal, vol. 28, no. 6, pp. 725–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Kadekoppala and A. A. Holder, “Merozoite surface proteins of the malaria parasite: the MSP1 complex and the MSP7 family,” International Journal for Parasitology, vol. 40, no. 10, pp. 1155–1161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. A. Holder, “Malaria vaccines: where next?” PLoS Pathogens, vol. 5, no. 10, Article ID e1000638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. J. Babon, W. D. Morgan, G. Kelly, J. F. Eccleston, J. Feeney, and A. A. Holder, “Structural studies on Plasmodium vivax merozoite surface protein-1,” Molecular and Biochemical Parasitology, vol. 153, no. 1, pp. 31–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. A. Holder, M. J. Blackman, P. A. Burghaus et al., “A malaria merozoite surface protein (MSP1)-structure, processing and function,” Memorias do Instituto Oswaldo Cruz, vol. 87, pp. 37–42, 1992. View at Scopus
  48. K. Tanabe, M. Mackay, M. Goman, and J. G. Scaife, “Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum,” Journal of Molecular Biology, vol. 195, no. 2, pp. 273–287, 1987. View at Scopus
  49. G. N. Kiwanuka, “Genetic diversity in Plasmodium falciparum merozoite surface protein 1 and 2 coding genes and its implications in malaria epidemiology: a review of published studies from 1997–2007,” Journal of Vector Borne Diseases, vol. 46, no. 1, pp. 1–12, 2009. View at Scopus
  50. C. Putaporntip, S. Jongwutiwes, T. Iwasaki, H. Kanbara, and A. L. Hughes, “Ancient common ancestry of the merozoite surface protein 1 of Plasmodium vivax as inferred from its homologue in Plasmodium knowlesi,” Molecular and Biochemical Parasitology, vol. 146, no. 1, pp. 105–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. I. S. Soares, G. Levitus, J. M. Souza, H. A. Del Portillo, and M. M. Rodrigues, “Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria,” Infection and Immunity, vol. 65, no. 5, pp. 1606–1614, 1997. View at Scopus
  52. I. S. Soares, M. G. Da Cunha, M. N. Silva, J. M. Souza, H. A. Del Portillo, and M. M. Rodrigues, “Longevity of naturally acquired antibody responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1,” American Journal of Tropical Medicine and Hygiene, vol. 60, no. 3, pp. 357–363, 1999. View at Scopus
  53. G. Levitus, F. Mertens, M. A. Speranca, L. M. A. Camargo, M. U. Ferreira, and H. A. Del Portillo, “Characterization of naturally acquired human IgG responses against the N-terminal region of the merozoite surface protein 1 of Plasmodium vivax,” American Journal of Tropical Medicine and Hygiene, vol. 51, no. 1, pp. 68–76, 1994. View at Scopus
  54. P. A. Nogueira, F. P. Alves, C. Fernandez-Becerra et al., “A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1,” Infection and Immunity, vol. 74, no. 5, pp. 2726–2733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Fernandez-Becerra, S. Sanz, M. Brucet et al., “Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay,” Malaria Journal, vol. 9, no. 1, article 29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. L. M. Storti-Melo, W. C. Souza-Neiras, G. C. Cassiano et al., “Evaluation of the naturally acquired antibody immune response to the Pv 200L N-terminal fragment of Plasmodium vivax merozoite surface protein-1 in four areas of the Amazon Region of Brazil,” American Journal of Tropical Medicine and Hygiene, vol. 84, no. 2 S, pp. 58–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Levitus and H. A. del Portillo, “Advances toward the development of an asexual blood stage MSP-1 vaccine of Plasmodium vivax,” Memorias do Instituto Oswaldo Cruz, vol. 89, supplement 2, pp. 81–84, 1994. View at Scopus
  58. F. Mertens, G. Levitus, L.-M. A. Camargo, M. U. Ferreira, A. P. Dutra, and H. A. Del Portillo, “Longitudinal study of naturally acquired humoral immune responses against the merozoite surface protein 1 of Plasmodium vivax in patients from Rondonia, Brazil,” American Journal of Tropical Medicine and Hygiene, vol. 49, no. 3, pp. 383–392, 1993. View at Scopus
  59. D. R. Cavanagh, D. Dodoo, L. Hviid et al., “Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria,” Infection and Immunity, vol. 72, no. 11, pp. 6492–6502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. G. J. M. Cowan, A. M. Creasey, K. Dhansarnsombut, A. W. Thomas, E. J. Remarque, and D. R. Cavanagh, “A malaria vaccine based on the polymorphic block 2 region of MSP-1 that elicits a broad serotype-spanning immune response,” PLoS One, vol. 6, no. 10, Article ID e26616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. K. K. A. Tetteh and D. J. Conway, “A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1,” Vaccine, vol. 29, no. 44, pp. 7811–7817, 2011. View at Publisher · View at Google Scholar · View at Scopus