About this Journal Submit a Manuscript Table of Contents
Journal of Lipids
Volume 2011 (2011), Article ID 528784, 14 pages
http://dx.doi.org/10.1155/2011/528784
Review Article

Membrane Fusion Induced by Small Molecules and Ions

Chemical Sciences Division, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700064, India

Received 3 November 2010; Revised 28 January 2011; Accepted 25 February 2011

Academic Editor: Philip W. Wertz

Copyright © 2011 Sutapa Mondal Roy and Munna Sarkar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. V. Chernomordik, G. B. Melikyan, and Y. A. Chizmadzhev, “Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers,” Biochimica et Biophysica Acta, vol. 906, no. 3, pp. 309–352, 1987. View at Scopus
  2. J. F. Aronson, “Nuclear membrane fusion in fertilized Lytechinus variegatus eggs,” Journal of Cell Biology, vol. 58, no. 1, pp. 126–134, 1973. View at Scopus
  3. P. M. Wassarman and E. S. Litscher, “Mammalian fertilization is dependent on multiple membrane fusion events,” Methods in Molecular Biology, vol. 475, pp. 99–113, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. M. Epand, “Fusion peptides and the mechanism of viral fusion,” Biochimica et Biophysica Acta, vol. 1614, no. 1, pp. 116–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Weissenhorn, A. Hinz, and Y. Gaudin, “Virus membrane fusion,” FEBS Letters, vol. 581, no. 11, pp. 2150–2155, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. E. Aganna, J. M. Burrin, G. A. Hitman, and M. D. Turner, “Involvement of calpain and synaptotagmin Ca2+ sensors in hormone secretion from excitable endocrine cells,” Journal of Endocrinology, vol. 190, no. 3, pp. R1–R7, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. T. Sollner and J. E. Rothman, “Neurotransmission: harnessing fusion machinery at the synapse,” Trends in Neurosciences, vol. 17, no. 8, pp. 344–348, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. E. H. Chen and E. N. Olson, “Unveiling the mechanisms of cell-cell fusion,” Science, vol. 308, no. 5720, pp. 369–373, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. G. Matthews, “Synaptic vesicle exocytosis: does a lingering kiss lead to fusion?” Neuron, vol. 35, no. 6, pp. 1013–1014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Martens and H. T. McMahon, “Mechanisms of membrane fusion: disparate players and common principles,” Nature Reviews Molecular Cell Biology, vol. 9, no. 7, pp. 543–556, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. E. J. W. Verwey, “Theory of the stability of lyophobic colloids,” Journal of Physical and Colloid Chemistry, vol. 51, no. 3, pp. 631–636, 1947. View at Scopus
  12. G. Cevc, “How membrane chain melting properties are regulated by the polar surface of the lipid bilayer,” Biochemistry, vol. 26, no. 20, pp. 6305–6310, 1987. View at Scopus
  13. R. P. Rand and V. A. Parsegian, “Hydration forces between phospholipids bilayers,” Biochimica et Biophysica Acta, vol. 988, no. 3, pp. 351–376, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Cevc, J. M. Seddon, and D. Marsh, “Thermodynamic and structural properties of phosphatidylserine bilayer membranes in the presence of lithium ions and protons,” Biochimica Et Biophysica Acta, vol. 814, no. 1, pp. 141–150, 1985.
  15. S. W. Burgess, T. J. McIntosh, and B. R. Lentz, “Modulation of poly(ethylene glycol)-induced fusion by membrane hydration: importance of interbilayer separation,” Biochemistry, vol. 31, no. 10, pp. 2653–2661, 1992. View at Scopus
  16. S. Ohki, “A mechanism of divalent ion-induced phosphatidylserine membrane fusion,” Biochimica et Biophysica Acta, vol. 689, no. 1, pp. 1–11, 1982. View at Scopus
  17. V. S. Markin, M. M. Kozlov, and V. L. Borovjagin, “On the theory of membrane fusion. The stalk mechanism,” General Physiology and Biophysics, vol. 3, no. 5, pp. 361–377, 1984. View at Scopus
  18. S. L. Leikin, M. M. Kozlov, L. V. Chernomordik, V. S. Markin, and Y. A. Chizmadzhev, “Membrane fusion: overcoming of the hydration barrier and local restructuring,” Journal of Theoretical Biology, vol. 129, no. 4, pp. 411–425, 1987. View at Scopus
  19. P. K. J. Kinnunen, “On the mechanism of the lameller to hexagonal HII phase transition and the biological significance of the HII propensity,” in Handbook of Nonmedical Application of Liposomes: Theory and Basic Sciences, D. D. Lasic and Y. Barenholz, Eds., pp. 153–171, CRC Press, 1996.
  20. P. K. J. Kinnunen, “On the molecular-level mechanisms of peripheral protein-membrane interactions induced by lipids forming inverted non-lamellar phases,” Chemistry and Physics of Lipids, vol. 81, no. 2, pp. 151–166, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. R. N. A. H. Lewis and R. N. McElhaney, “Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines,” Biophysical Journal, vol. 64, no. 4, pp. 1081–1096, 1993. View at Scopus
  22. G. L. Powell and D. Marsh, “Polymorphic phase behavior of cardiolipin derivatives studied by 31P NMR and X-ray diffraction,” Biochemistry, vol. 24, no. 12, pp. 2902–2908, 1985.
  23. R. M. Epand, R. F. Epand, B. T. C. Leon, F. M. Menger, and J. F. Kuo, “Evidence for the regulation of the activity of protein kinase C through changes in membrane properties,” Bioscience Reports, vol. 11, no. 1, pp. 59–64, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. T. D. Madden and P. R. Cullis, “Stabilization of bilayer structure for unsaturated phosphatidylethanolamines by detergents,” Biochimica et Biophysica Acta, vol. 684, no. 1, pp. 149–153, 1982. View at Scopus
  25. R. P. Rand, N. L. Fuller, S. M. Gruner, and V. A. Parsegian, “Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress,” Biochemistry, vol. 29, no. 1, pp. 76–87, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Lohner, G. Degovics, P. Laggner, E. Gnamusch, and F. Paltauf, “Squalene promotes the formation of non-bilayer structures in phospholipid model membranes,” Biochimica et Biophysica Acta, vol. 1152, no. 1, pp. 69–77, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Cevc and H. Richardsen, “Lipid vesicles and membrane fusion,” Advanced Drug Delivery Reviews, vol. 38, no. 3, pp. 207–232, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Nir, J. Wilschut, and J. Bentz, “The rate of fusion of phospholipid vesicles and the role of bilayer curvature,” Biochimica et Biophysica Acta, vol. 688, no. 1, pp. 275–278, 1982. View at Scopus
  29. R. A. Parente and B. R. Lentz, “Fusion and phase separation monitored by lifetime changes of a fluorescent phospholipid probe,” Biochemistry, vol. 25, no. 5, pp. 1021–1026, 1986. View at Scopus
  30. L. V. Chernomordik and M. M. Kozlov, “Protein-lipid interplay in fusion and fission of biological membranes,” Annual Review of Biochemistry, vol. 72, pp. 175–207, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. M. Kozlov, “Determination of lipid spontaneous curvature from X-ray examinations of inverted hexagonal phases,” in Methods in Membrane Lipids, A. M. Dopics, Ed., pp. 355–357, Humana Press, Totowa, NJ, USA, 2007.
  32. L. V. Chernomordik and M. M. Kozlov, “Mechanics of membrane fusion,” Nature Structural and Molecular Biology, vol. 15, no. 7, pp. 675–683, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. D. Hoekstra and N. Duzgunes, “Lipid mixing asssays to determine fusion in liposome systems,” in Methods in Enzymology, N. Duzgunes, Ed., pp. 15–32, Academic Press, San Diego, Calif, USA, 1993.
  34. D. K. Struck, D. Hoekstra, and R. E. Pagano, “Use of resonance energy transfer to monitor membrane fusion,” Biochemistry, vol. 20, no. 14, pp. 4093–4099, 1981. View at Scopus
  35. J. Wilschut, N. Düzgüneş, R. Fraley, and D. Papahadjopoulos, “Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents,” Biochemistry, vol. 19, no. 26, pp. 6011–6021, 1980. View at Scopus
  36. N. Duzgunes and J. Wilschut, “Fusion assays monitoring intermixing of aqueous contents,” in Methods in Enzymology, N. Duzgunes, Ed., pp. 3–14, Academic Press, San Diego, Calif, USA, 1993.
  37. H. Ellens, J. Bentz, and F. C. Szoka, “PH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact,” Biochemistry, vol. 23, no. 7, pp. 1532–1538, 1984. View at Scopus
  38. D. Hoekstra, N. Düzgünes, and J. Wilschut, “Agglutination and fusion of globoside Gl-4 containing phospholipid vesicles mediated by lectins and calcium ions,” Biochemistry, vol. 24, no. 3, pp. 565–572, 1985. View at Scopus
  39. A. Chanturiya, L. V. Chernomordik, and J. Zimmerberg, “Flickering fusion pores comparable with initial exocytotic pores occur in protein-free phospholipid bilayers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14423–14428, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. J. M. Fernandez, E. Neher, and B. D. Gomperts, “Capacitance measurements reveal stepwise fusion events in degranulating mast cells,” Nature, vol. 312, no. 5993, pp. 453–455, 1984. View at Scopus
  41. B. R. Lentz, V. Malinin, M. E. Haque, and K. Evans, “Protein machines and lipid assemblies: current views of cell membrane fusion,” Current Opinion in Structural Biology, vol. 10, no. 5, pp. 607–615, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Jahn, T. Lang, and T. C. Südhof, “Membrane fusion,” Cell, vol. 112, no. 4, pp. 519–533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. Kozlov and L. V. Chernomordik, “A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements,” Biophysical Journal, vol. 75, no. 3, pp. 1384–1396, 1998. View at Scopus
  44. M. E. Haque, V. Koppaka, P. H. Axelsen, and B. R. Lentz, “Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion,” Biophysical Journal, vol. 89, no. 5, pp. 3183–3194, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. R. B. Sutton, D. Fasshauer, R. Jahn, and A. T. Brunger, “Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution,” Nature, vol. 395, no. 6700, pp. 347–353, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. S. Ulrich, W. Tichelaar, G. Förster, O. Zschörnig, S. Weinkauf, and H. W. Meyer, “Ultrastructural characterization of peptide-induced membrane fusion and peptide self-assembly in the lipid bilayer,” Biophysical Journal, vol. 77, no. 2, pp. 829–841, 1999. View at Scopus
  47. W. E. Teague, N. L. Fuller, R. P. Rand, and K. Gawrisch, “Polyunsaturated lipids in membrane fusion events,” Cellular & Molecular Biology Letters, vol. 7, no. 2, pp. 262–264, 2002. View at Scopus
  48. K. O. Evans and B. R. Lentz, “Kinetics of lipid rearrangements during poly(ethylene glycol) mediated fusion of highly curved unilamellar vesicles,” Biochemistry, vol. 41, no. 4, pp. 1241–1249, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Breisblatt and S. Ohki, “Fusion in phospholipid spherical membranes. II. Effect of cholesterol, divalent ions and pH,” Journal of Membrane Biology, vol. 29, no. 1-2, pp. 127–146, 1976. View at Scopus
  50. N. Oku, S. Shibamoto, F. Ito, H. Gondo, and M. Nango, “Low pH induced membrane fusion of lipid vesicles containing proton-sensitive polymer,” Biochemistry, vol. 26, no. 25, pp. 8145–8150, 1987. View at Scopus
  51. J. L. Swift, A. Carnini, T. E. S. Dahms, and D. T. Cramb, “Anesthetic-enhanced membrane fusion examined using two-photon fluorescence correlation spectroscopy,” Journal of Physical Chemistry B, vol. 108, no. 30, pp. 11133–11138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. J. van der Bosch and H. M. McConnell, “Fusion of dipalmitoylphosphatidylcholine vesicle membrane induced by concanavalin A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 11, pp. 4409–4413, 1975. View at Scopus
  53. C. Miller and E. Racker, “Fusion of phospholipid vesicles reconstituted with cytochrome c oxidase and mitochondrial hydrophobic protein,” Journal of Membrane Biology, vol. 26, no. 4, pp. 319–333, 1976. View at Scopus
  54. Y. Okada and F. Murayama, “Requirement of calcium ions for the cell fusion reaction of animal cells by HVJ,” Experimental Cell Research, vol. 44, no. 2-3, pp. 527–551, 1966. View at Scopus
  55. D. Papahadjopoulos, “Effects of bivalent cations and proteins on thermotropic properties of phospholipid membranes. Implications for the molecular mechanism of fusion and endocytosis,” Journal of Colloid And Interface Science, vol. 58, no. 3, pp. 459–470, 1977. View at Scopus
  56. D. Papahadjopoulos, W. J. Vail, and C. Newton, “Studies on membrane fusion. III. The role of calcium induced phase changes,” Biochimica et Biophysica Acta, vol. 465, no. 3, pp. 579–598, 1977. View at Scopus
  57. D. Papahadjopoulos, S. Hui, W. J. Vail, and G. Poste, “Studies on membrane fusion. I. Interactions of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and dimethylsulfoxide,” Biochimica et Biophysica Acta, vol. 448, no. 2, pp. 245–264, 1976. View at Scopus
  58. D. Papahadjopoulos, W. J. Vail, W. A. Pangborn, and G. Poste, “Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals,” Biochimica et Biophysica Acta, vol. 448, no. 2, pp. 265–283, 1976. View at Scopus
  59. J. Wilschut, N. Düzgüneş, and D. Papahadjopoulos, “Calcium/magnesium specificity in membrane fusion: kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature,” Biochemistry, vol. 20, no. 11, pp. 3126–3133, 1981. View at Scopus
  60. N. Duzgunes, S. Nir, J. Wilschut, et al., “Calcium-induced and magnesium-induced fusion of mixed phosphatidylserine-phosphatidylcholine vesicles—effect of ion binding,” Journal of Membrane Biology, vol. 59, no. 2, pp. 115–125, 1981.
  61. A. Aballay, M. N. Sarrouf, M. I. Colombo, P. D. Stahl, and L. S. Mayorga, “Zn2+ depletion blocks endosome fusion,” Biochemical Journal, vol. 312, part 3, pp. 919–923, 1995. View at Scopus
  62. M. Deleers, J. P. Servais, and E. Wulfert, “Synergistic effects of micromolar concentrations of Zn2+ and Ca2+ on membrane fusion,” Biochemical and Biophysical Research Communications, vol. 137, no. 1, pp. 101–107, 1986. View at Scopus
  63. M. Deleers, J. P. Servais, and E. Wulfert, “Micromolar concentrations of Zn2+ potentiates Ca2+-induced phase separation of phosphatidyl serine containing liposomes,” Biochemical and Biophysical Research Communications, vol. 136, no. 2, pp. 476–481, 1986. View at Scopus
  64. T. Tanaka and M. Yamazaki, “Membrane fusion of giant unilamellar vesicles of neutral phospholipid membranes induced by La3+,” Langmuir, vol. 20, no. 13, pp. 5160–5164, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Ellens, J. Bentz, and F. C. Szoka, “H+- and Ca2+-induced fusion and destabilization of liposomes,” Biochemistry, vol. 24, no. 13, pp. 3099–3106, 1985. View at Scopus
  66. G. Cevc, “Membrane electrostatics,” Biochimica et Biophysica Acta, vol. 1031, no. 3, pp. 311–382, 1990. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Nir and J. Bentz, “On the forces between phospholipid bilayers,” Journal of Colloid And Interface Science, vol. 65, no. 3, pp. 399–414, 1978. View at Scopus
  68. D. Papahadjopoulos, G. Poste, B. E. Schaeffer, and W. J. Vail, “Membrane fusion and molecular segregation in phospholipid vesicles,” Biochimica et Biophysica Acta, vol. 352, no. 1, pp. 10–28, 1974. View at Scopus
  69. A. Portis, C. Newton, W. Pangborn, and D. Papahadjopoulos, “Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin,” Biochemistry, vol. 18, no. 5, pp. 780–790, 1979. View at Scopus
  70. C. Newton, W. Pangborn, S. Nir, and D. Papahadjopoulos, “Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure,” Biochimica Et Biophysica Acta, vol. 506, no. 2, pp. 281–287, 1978.
  71. S. Nir, C. Newton, and D. Papahadjo-Poulos, “Binding of cations to phosphatidylserine vesicles,” Bioelectrochemistry and Bioenergetics, vol. 5, no. 1, pp. 116–133, 1978. View at Publisher · View at Google Scholar · View at Scopus
  72. H. Hauser, M. C. Phillips, and M. D. Barratt, “Differences in the interaction of inorganic and organic (hydrophobic) cations with phosphatidylserine membranes,” Biochimica et Biophysica Acta, vol. 413, no. 3, pp. 341–353, 1975. View at Scopus
  73. D. Papahadjopoulos, A. Portis, and W. Pangborn, “Calcium induced lipid phase transitions and membrane fusion,” Annals of the New York Academy of Sciences, vol. 308, pp. 50–66, 1978. View at Scopus
  74. A. Portis, C. Newton, W. Pangborn, and D. Papahadjopoulos, “Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin,” Biochemistry, vol. 18, no. 5, pp. 780–790, 1979. View at Scopus
  75. X. Wu and Q. T. Li, “Ca2+-induced fusion of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles,” Journal of Lipid Research, vol. 40, no. 7, pp. 1254–1262, 1999. View at Scopus
  76. X. Wu, K. H. Lee, and Q. T. Li, “Stability and pH sensitivity of sulfatide-containing phosphatidylethanolamine small unilamellar vesicles,” Biochimica et Biophysica Acta, vol. 1284, no. 1, pp. 13–19, 1996. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Faure, J. F. Tranchant, and E. J. Dufourc, “Comparative effects of cholesterol and cholesterol sulfate on hydration and ordering of dimyristoylphosphatidylcholine membranes,” Biophysical Journal, vol. 70, no. 3, pp. 1380–1390, 1996. View at Scopus
  78. G. G. Montich, M. M. Bustos, B. Maggio, and F. A. Cumar, “Micropolarity of interfaces containing anionic and neutral glycosphingolipids as sensed by Merocyanine 540,” Chemistry and Physics of Lipids, vol. 38, no. 4, pp. 319–326, 1985. View at Scopus
  79. M. J. Hope, D. C. Walker, and P. R. Cullis, “Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study,” Biochemical and Biophysical Research Communications, vol. 110, no. 1, pp. 15–22, 1983. View at Scopus
  80. T. M. Allen, K. Hong, and D. Papahadjopoulos, “Membrane contact, fusion, and hexagonal (H) transitions in phosphatidylethanolamine liposomes,” Biochemistry, vol. 29, no. 12, pp. 2976–2985, 1990. View at Scopus
  81. B. Maggio, F. A. Cumar, and R. Caputto, “Surface behaviour of gangliosides and related glycosphingolipids,” Biochemical Journal, vol. 171, no. 3, pp. 559–565, 1978. View at Scopus
  82. B. Maggio, J. M. Sturtevant, and R. K. Yu, “Effect of calcium ions on the thermotropic behaviour of neutral and anionic glycosphingolipids,” Biochimica et Biophysica Acta, vol. 901, no. 2, pp. 173–182, 1987. View at Scopus
  83. H. Hauser, I. Pascher, R. H. Pearson, and S. Sundell, “Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine,” Biochimica et Biophysica Acta, vol. 650, no. 1, pp. 21–51, 1981. View at Scopus
  84. A. M. J. Blow, G. M. Botham, and J. A. Lucy, “Calcium ions and cell fusion. Effects of chemical fusogens on the permeability of erythrocytes to calcium and other ions,” Biochemical Journal, vol. 182, no. 2, pp. 555–563, 1979. View at Scopus
  85. Q. F. Ahkong, D. Fisher, W. Tampion, and J. A. Lucy, “Mechanisms of cell fusion,” Nature, vol. 253, no. 5488, pp. 194–195, 1975. View at Scopus
  86. B. Maggio and J. A. Lucy, “Polar group behaviour in mixed monolayers of phospholipids and fusogenic lipids,” Biochemical Journal, vol. 155, no. 2, pp. 353–364, 1976. View at Scopus
  87. B. Maggio and J. A. Lucy, “Studies on mixed monolayers of phospholipids and fusogenic lipids,” Biochemical Journal, vol. 149, no. 3, pp. 597–608, 1975. View at Scopus
  88. B. Maggio and J. A. Lucy, “Interactions of water-soluble fusogens with phospholipids in monolayers,” FEBS Letters, vol. 94, no. 2, pp. 301–304, 1978. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Ohki, N. Düzgünes, and K. Leonards, “Phospholipid vesicle aggregation: effect of monovalent and divalent ions,” Biochemistry, vol. 21, no. 9, pp. 2127–2133, 1982. View at Scopus
  90. M. A. Kolber and D. H. Haynes, “Evidence for a role of phosphatidyl ethanolamine as a modulator of membrane-membrane contact,” Journal of Membrane Biology, vol. 48, no. 1, pp. 95–114, 1979. View at Scopus
  91. C. L. Pryor, L. M. Loew, and M. Bridge, “Vesicle and non-vesicle Ph-dependent behavior of phosphatidylethanolamine dispersions,” Biophysical Journal, vol. 41, no. 2, p. A349, 1983.
  92. N. Duzgunes, R. M. Straubinger, and D. Papahadjopoulos, “Ph-dependent membrane-fusion,” Journal of Cell Biology, vol. 97, no. 5, p. A178, 1983.
  93. J. Connor, M. B. Yatvin, and L. Huang, “pH-sensitive liposomes: acid-induced liposome fusion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 6, pp. 1715–1718, 1984. View at Scopus
  94. W. Mason and N. G. A. Miller, “Fusion of charged and uncharged liposomes by n-alkyl bromides,” Biochemical and Biophysical Research Communications, vol. 91, no. 3, pp. 878–885, 1979. View at Scopus
  95. W. T. Mason, N. J. Lane, N. G. A. Miller, and A. D. Bangham, “Fusion of liposome membranes by the n-alkyl bromides,” Journal of Membrane Biology, vol. 55, no. 1, pp. 69–79, 1980. View at Scopus
  96. W. T. Mason, S. B. Hladky, and D. A. Haydon, “Fusion of photoreceptor membrane vesicles,” Journal of Membrane Biology, vol. 46, no. 2, pp. 171–181, 1979. View at Scopus
  97. A. P. Hornby and P. R. Cullis, “Influence of local and neutral anaesthetics on the polymorphic phase preferences of egg yolk phosphatidylethanolamine,” Biochimica et Biophysica Acta, vol. 647, no. 2, pp. 285–292, 1981. View at Scopus
  98. J. A. Veiro, R. G. Khalifah, and E. S. Rowe, “The polymorphic phase behavior of dielaidoylphosphatidylethanolamine. Effect of n-alkanols,” Biochimica et Biophysica Acta, vol. 979, no. 2, pp. 251–256, 1989. View at Scopus
  99. A. Chanturiya, E. Leikina, J. Zimmerberg, and L. V. Chernomordik, “Short-chain alcohols promote an early stage of membrane hemifusion,” Biophysical Journal, vol. 77, no. 4, pp. 2035–2045, 1999. View at Scopus
  100. H. Komatsu and S. Okada, “Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes,” Biochimica et Biophysica Acta, vol. 1235, no. 2, pp. 270–280, 1995. View at Publisher · View at Google Scholar
  101. D. P. Siegel, “Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms,” Biophysical Journal, vol. 65, no. 5, pp. 2124–2140, 1993. View at Scopus
  102. C. Ho and C. D. Stubbs, “Effect of n-alkanols on lipid bilayer hydration,” Biochemistry, vol. 36, no. 35, pp. 10630–10637, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. W. Stillwell, B. Brengle, F. C. Yu, and S. R. Wassall, “Abscisic acid promotes fusion of phospholipid vesicles,” Phytochemistry, vol. 30, no. 11, pp. 3539–3544, 1991. View at Scopus
  104. J. G. Stollery and W. J. Vail, “Interactions of divalent cations or basic proteins with phosphatidylethanolamine vesicles,” Biochimica et Biophysica Acta, vol. 471, no. 3, pp. 372–390, 1977. View at Scopus
  105. N. Duzgunes, J. Wilschut, R. Fraley, and D. Papahadjopoulos, “Studies on the mechanism of membrane-fusion—role of headgroup composition in calcium-induced and magnesium-induced fusion of mixed phospholipid-vesicles,” Biochimica et Biophysica Acta, vol. 642, no. 1, pp. 182–195, 1981.
  106. W. Stillwell, B. Brengle, D. Belcher, and S. R. Wassall, “Comparison of effects of ABA and IAA on phospholipid bilayers,” Phytochemistry, vol. 26, no. 12, pp. 3145–3150, 1987. View at Scopus
  107. J. Wilschut and D. Hoekstra, “Membrane fusion: lipid vesicles as a model system,” Chemistry and Physics of Lipids, vol. 40, no. 2–4, pp. 145–166, 1986. View at Scopus
  108. S. W. Hui, L. T. Boni, T. P. Stewart, and T. Isac, “Identification of phosphatidylserine and phosphatidylcholine in calcium-induced phase separated domains,” Biochemistry, vol. 22, no. 14, pp. 3511–3516, 1983. View at Scopus
  109. L. Koubi, M. Tarek, M. L. Klein, and D. Scharf, “Distribution of halothane in a dipalmitoylphosphatidylcholine bilayer from molecular dynamics calculations,” Biophysical Journal, vol. 78, no. 2, pp. 800–811, 2000. View at Scopus
  110. J. Baber, J. F. Ellena, and D. S. Cafiso, “Distribution of general anesthetics in phospholipid bilayers determined using 2H NMR and 1H-1H NOE spectroscopy,” Biochemistry, vol. 34, no. 19, pp. 6533–6539, 1995. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Ferro and M. P. Krafft, “Incorporation of semi-fluorinated alkanes in the bilayer of small unilamellar vesicles of phosphatidylserine: impact on fusion kinetics,” Biochimica et Biophysica Acta, vol. 1581, no. 1-2, pp. 11–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. M. B. Sporn and N. Suh, “Chemoprevention of cancer,” Carcinogenesis, vol. 21, no. 3, pp. 525–530, 2000. View at Scopus
  113. S. R. Ritland and S. J. Gendler, “Chemoprevention of intestinal adenomas in the Apc(Min) mouse by piroxicamml: kinetics, strain effects and resistance to chemosuppression,” Carcinogenesis, vol. 20, no. 1, pp. 51–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  114. E. M. Grossman, W. E. Longo, N. Panesar, J. E. Mazuski, and D. L. Kaminski, “The role of cyclooxygenase enzymes in the growth of human gall bladder cancer cells,” Carcinogenesis, vol. 21, no. 7, pp. 1403–1409, 2000. View at Scopus
  115. H. Chakraborty, S. Mondal, and M. Sarkar, “Membrane fusion: a new function of non steroidal anti-inflammatory drugs,” Biophysical Chemistry, vol. 137, no. 1, pp. 28–34, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. H. Chakraborty, P. K. Chakraborty, S. Raha, P. C. Mandal, and M. Sarkar, “Interaction of piroxicam with mitochondrial membrane and cytochrome c,” Biochimica et Biophysica Acta, vol. 1768, no. 5, pp. 1138–1146, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. S. Mondal and M. Sarkar, “Non-Steroidal anti-inflammatory drug induced membrane fusion: concentration and temperature effects,” Journal of Physical Chemistry B, vol. 113, no. 51, pp. 16323–16331, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. S. Mondal Roy, A. S. Bansode, and M. Sarkar, “Effect of increase in orientational order of lipid chains and head group spacing on non steroidal anti-inflammatory drug induced membrane fusion,” Langmuir, vol. 26, no. 24, pp. 18967–18975, 2010. View at Publisher · View at Google Scholar · View at PubMed
  119. R. A. Parente and B. R. Lentz, “Rate and extent of poly(ethylene glycol)-induced large vesicle fusion monitored by bilayer and internal contents mixing,” Biochemistry, vol. 25, no. 21, pp. 6678–6688, 1986. View at Scopus
  120. S. Kundu, H. Chakraborty, M. Sarkar, and A. Datta, “Interaction of Oxicam NSAIDs with lipid monolayer: anomalous dependence on drug concentration,” Colloids and Surfaces B, vol. 70, no. 1, pp. 157–161, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. C. L. Innes, P. B. Smith, R. Langenbach, K. R. Tindall, and L. R. Boone, “Cationic liposomes (Lipofectin) mediate retroviral infection in the absence of specific receptors,” Journal of Virology, vol. 64, no. 2, pp. 957–961, 1990. View at Scopus
  122. R. D. A. Lang, C. Wickenden, J. Wynne, and J. A. Lucy, “Proteolysis of ankyrin and of band 3 protein in chemically induced cell fusion. Ca2+ is not mandatory for fusion,” Biochemical Journal, vol. 218, no. 2, pp. 295–305, 1984. View at Scopus
  123. G. M. Taylor, A. J. Zullo, G. M. Larson, and D. A. Sanders, “Promotion of retroviral entry in the absence of envelope protein by chlorpromazine,” Virology, vol. 316, no. 1, pp. 184–189, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. P. Seeman and W. O. Kwant, “Membrane expansion of erythrocyte by both neutral and ionized forms of chlorpromazine,” Biochimica et Biophysica Acta, vol. 183, no. 3, pp. 512–519, 1969.
  125. W. O. Kwant and P. Seeman, “Membrane concentration of a local anesthetic (Chlorpromazine),” Biochimica Et Biophysica Acta, vol. 183, no. 3, pp. 530–543, 1969.
  126. M. J. Conrad and S. J. Singer, “The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure,” Biochemistry, vol. 20, no. 4, pp. 808–818, 1981. View at Scopus
  127. N. Gains and A. P. Dawson, “Evidence against protein-induced internal pressure in biological membranes. Partition of 8-anilinonaphthalene-1-sulphonate into Triton X-100 micelles and submitochondrial particles,” Biochemical Journal, vol. 207, no. 3, pp. 567–572, 1982. View at Scopus
  128. M. J. E. A Frisch, Gaussian 03, Revision D.02, Gaussian, Pittsburgh, Pa, USA, 2003.
  129. M. J. S. Dewar and W. Thiel, “Ground states of molecules. 38. The MNDO method. Approximations and parameters,” Journal of the American Chemical Society, vol. 99, no. 15, pp. 4899–4907, 1977. View at Scopus