About this Journal Submit a Manuscript Table of Contents
Journal of Lipids
Volume 2011 (2011), Article ID 730209, 11 pages
http://dx.doi.org/10.1155/2011/730209
Review Article

Impact of oxLDL on Cholesterol-Rich Membrane Rafts

Section of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA

Received 15 September 2010; Accepted 29 November 2010

Academic Editor: Alessandro Prinetti

Copyright © 2011 Irena Levitan and Tzu-Pin Shentu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Berliner, G. Subbanagounder, N. Leitinger, A. D. Watson, and D. Vora, “Evidence for a role of phospholipid oxidation products in atherogenesis,” Trends in Cardiovascular Medicine, vol. 11, no. 3-4, pp. 142–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. N. Diaz, B. Frei, J. A. Vita, and J. F. Keaney, “Antioxidants and atherosclerotic heart disease,” The New England Journal of Medicine, vol. 337, no. 6, pp. 408–416, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Holvoet, A. Mertens, P. Verhamme et al., “Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 5, pp. 844–848, 2001. View at Scopus
  4. P. Holvoet, J. Vanhaecke, S. Janssens, F. Van De Werf, and D. Collen, “Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease,” Circulation, vol. 98, no. 15, pp. 1487–1494, 1998. View at Scopus
  5. S. I. Toshima, A. Hasegawa, M. Kurabayashi et al., “Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 20, no. 10, pp. 2243–2247, 2000. View at Scopus
  6. G. Cazzolato, P. Avogaro, and G. Bittolo-Bon, “Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC,” Free Radical Biology and Medicine, vol. 11, no. 3, pp. 247–253, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. H. van Tits, T. M. van Himbergen, H. L. M. Lemmers, J. de Graaf, and A. F. H. Stalenhoef, “Proportion of oxidized LDL relative to plasma apolipoprotein B does not change during statin therapy in patients with heterozygous familial hypercholesterolemia,” Atherosclerosis, vol. 185, no. 2, pp. 307–312, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. H. N. Hodis, D. M. Kramsch, P. Avogaro et al., “Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-),” Journal of Lipid Research, vol. 35, no. 4, pp. 669–677, 1994. View at Scopus
  9. P. Holvoet, G. Theilmeier, B. Shivalkar, W. Flameng, and D. Collen, “LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 18, no. 3, pp. 415–422, 1998. View at Scopus
  10. D. A. Brown and E. London, “Functions of lipid rafts in biological membranes,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 111–136, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Simons and M. J. Gerl, “Revitalizing membrane rafts: new tools and insights,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 688–699, 2010. View at Publisher · View at Google Scholar
  12. K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature, vol. 387, no. 6633, pp. 569–572, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. L. J. Pike, “Rafts defined: a report on the Keystone symposium on lipid rafts and cell function,” Journal of Lipid Research, vol. 47, no. 7, pp. 1597–1598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Burkitt, “A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, α-tocopherol, thiols, and ceruloplasmin,” Archives of Biochemistry and Biophysics, vol. 394, no. 1, pp. 117–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Esterbauer, J. Gebicki, H. Puhl, and G. Jurgens, “The role of lipid peroxidation and antioxidants in oxidative modification of LDL,” Free Radical Biology and Medicine, vol. 13, no. 4, pp. 341–390, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Boullier, Y. Li, O. Quehenberger et al., “Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 5, pp. 1169–1176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Heydeck, J. M. Upston, H. Viita, S. Ylä-Herttuala, and R. Stocker, “Oxidation of LDL by rabbit and human 15-lipoxygenase: prevalence of nonenzymatic reactions,” Journal of Lipid Research, vol. 42, no. 7, pp. 1082–1088, 2001. View at Scopus
  18. F. Sigari, C. Lee, J. L. Witztum, and P. D. Reaven, “Fibroblasts that overexpress 15-lipoxygenase generate bioactive and minimally modified LDL,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 17, no. 12, pp. 3639–3645, 1997. View at Scopus
  19. J. M. Upston, J. Neuzil, and R. Stocker, “Oxidation of LDL by recombinant human 15-lipoxygenase: evidence for α-tocopherol-dependent oxidation of esterified core and surface lipids,” Journal of Lipid Research, vol. 37, no. 12, pp. 2650–2661, 1996. View at Scopus
  20. S. Yia-Herttuala, W. Palinski, M. E. Rosenfeld et al., “Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man,” Journal of Clinical Investigation, vol. 84, no. 4, pp. 1086–1095, 1989. View at Scopus
  21. A. Blair, P. W. Shaul, I. S. Yuhanna, P. A. Conrad, and E. J. Smart, “Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation,” The Journal of Biological Chemistry, vol. 274, no. 45, pp. 32512–32519, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. F. J. Byfield, S. Tikku, G. H. Rothblat, K. J. Gooch, and I. Levitan, “oxLDL increases endothelial stiffness, force generation, and network formation,” Journal of Lipid Research, vol. 47, no. 4, pp. 715–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Patschan, H. Li, S. Brodsky et al., “Probing lipid rafts with proximity imaging: actions of proatherogenic stimuli,” American Journal of Physiology, vol. 290, no. 6, pp. H2210–H2219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. B. Kowalsky, F. J. Byfield, and I. Levitan, “oxLDL facilitates flow-induced realignment of aortic endothelial cells,” American Journal of Physiology, vol. 295, no. 2, pp. C332–C340, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. T. P. Shentu, I. Titushkin, D. K. Singh et al., “oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation,” American Journal of Physiology, vol. 299, no. 2, pp. C218–C229, 2010. View at Publisher · View at Google Scholar
  26. R. G. W. Anderson and K. Jacobson, “Cell biology: a role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains,” Science, vol. 296, no. 5574, pp. 1821–1825, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. E. J. Smart, G. A. Graf, M. A. McNiven et al., “Caveolins, liquid-ordered domains, and signal transduction,” Molecular and Cellular Biology, vol. 19, no. 11, pp. 7289–7304, 1999. View at Scopus
  28. G. Sowa, M. Pypaert, and W. C. Sessa, “Distinction between signaling mechanisms in lipid rafts vs. caveolae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 14072–14077, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. E. J. Smart, Y. S. Ying, P. A. Conrad, and R. G. W. Anderson, “Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation,” Journal of Cell Biology, vol. 127, no. 5, pp. 1185–1197, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Kreit and N. S. Sampson, “Cholesterol oxidase: physiological functions,” FEBS Journal, vol. 276, no. 23, pp. 6844–6856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Drab, P. Verkade, M. Elger et al., “Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice,” Science, vol. 293, no. 5539, pp. 2449–2452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Razani and M. P. Lisanti, “Caveolin-deficient mice: insights into caveolar function and human disease,” Journal of Clinical Investigation, vol. 108, no. 11, pp. 1553–1561, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. W. J. Chang, K. G. Rothberg, B. A. Kamen, and R. G. W. Anderson, “Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate,” Journal of Cell Biology, vol. 118, no. 1, pp. 63–69, 1992. View at Publisher · View at Google Scholar · View at Scopus
  34. K. G. Rothberg, Y. S. Ying, B. A. Kamen, and R. G. W. Anderson, “Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate,” Journal of Cell Biology, vol. 111, no. 6, pp. 2931–2938, 1990. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Uittenbogaard, P. W. Shaul, I. S. Yuhanna, A. Blair, and E. J. Smart, “High density lipoprotein prevents oxidized low density lipoprotein- induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae,” The Journal of Biological Chemistry, vol. 275, no. 15, pp. 11278–11283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Endemann, L. W. Stanton, K. S. Madden, C. M. Bryant, R. T. White, and A. A. Protter, “CD36 is a receptor for oxidized low density lipoprotein,” The Journal of Biological Chemistry, vol. 268, no. 16, pp. 11811–11816, 1993. View at Scopus
  37. A. C. Nicholson, S. Frieda, A. Pearce, and R. L. Silverstein, “Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 2, pp. 269–275, 1995. View at Scopus
  38. I. Levitan, S. Volkov, and P. V. Subbaiah, “Oxidized LDL: diversity, patterns of recognition, and pathophysiology,” Antioxidants and Redox Signaling, vol. 13, no. 1, pp. 39–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. K. A. Walton, A. L. Cole, M. Yeh et al., “Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1197–1203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. D. Watson, N. Leitinger, M. Navab et al., “Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo,” The Journal of Biological Chemistry, vol. 272, no. 21, pp. 13597–13607, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. E. A. Podrez, M. Febbraio, N. Sheibani et al., “Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species,” Journal of Clinical Investigation, vol. 105, no. 8, pp. 1095–1108, 2000. View at Scopus
  42. M. Yeh, A. L. Cole, J. Choi et al., “Role for sterol regulatory element-binding protein in activation of endothelial cells by phospholipid oxidation products,” Circulation Research, vol. 95, no. 8, pp. 780–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. F. Kincer, A. Uittenbogaard, J. Dressman et al., “Hypercholesterolemia promotes a CD36-dependent and endothelial nitric-oxide synthase-mediated vascular dysfunction,” The Journal of Biological Chemistry, vol. 277, no. 26, pp. 23525–23533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. X. A. Li, W. V. Everson, and E. J. Smart, “Caveolae, lipid rafts, and vascular disease,” Trends in Cardiovascular Medicine, vol. 15, no. 3, pp. 92–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Edidin, “The state of lipid rafts: from model membranes to cells,” Annual Review of Biophysics and Biomolecular Structure, vol. 32, pp. 257–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. E. London, “How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells,” Biochimica et Biophysica Acta, vol. 1746, no. 3, pp. 203–220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. L. J. Pike, “Lipid rafts: bringing order to chaos,” Journal of Lipid Research, vol. 44, no. 4, pp. 655–667, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Zhang and P.-L. Li, “Membrane raft redox signalosomes in endothelial cells,” Free Radical Research, vol. 44, no. 8, pp. 831–842, 2010. View at Publisher · View at Google Scholar
  49. S. Mayor and F. R. Maxfield, “Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment,” Molecular Biology of the Cell, vol. 6, no. 7, pp. 929–944, 1995. View at Scopus
  50. R. G. Parton, “Ultrastructural localization of gangliosides; GM is concentrated in caveolae,” Journal of Histochemistry and Cytochemistry, vol. 42, no. 2, pp. 155–166, 1994. View at Scopus
  51. S. Mayor, K. G. Rothberg, and F. R. Maxfield, “Sequestration of GPI-anchored proteins in caveolae triggered by cross- linking,” Science, vol. 264, no. 5167, pp. 1948–1951, 1994. View at Scopus
  52. G. J. Schütz, G. Kada, V. P. Pastushenko, and H. Schindler, “Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy,” EMBO Journal, vol. 19, no. 5, pp. 892–901, 2000. View at Scopus
  53. K. Gaus, E. Gratton, E. P. W. Kable et al., “Visualizing lipid structure and raft domains in living cells with two-photon microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15554–15559, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Gidwani, D. Holowka, and B. Baird, “Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells,” Biochemistry, vol. 40, no. 41, pp. 12422–12429, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. Swamy, L. Ciani, M. Ge et al., “Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy,” Biophysical Journal, vol. 90, no. 12, pp. 4452–4465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Zeng, N. Tao, K. N. Chung, J. E. Heuser, and D. M. Lublin, “Endocytosis of oxidized low density lipoprotein through scavenger receptor CD36 utilizes a lipid raft pathway that does not require Caveolin-1,” The Journal of Biological Chemistry, vol. 278, no. 46, pp. 45931–45936, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. F. J. Byfield, B. D. Hoffman, V. G. Romanenko, Y. Fang, J. C. Crocker, and I. Levitan, “Evidence for the role of cell stiffness in modulation of volume-regulated anion channels,” Acta Physiologica, vol. 187, no. 1-2, pp. 285–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. D. A. De Angelis, G. Miesenböck, B. V. Zemelman, and J. E. Rothman, “PRIM: proximity imaging of green fluorescent protein-tagged polypeptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 21, pp. 12312–12316, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Augé, N. Andrieu, A. Nègre-Salvayre, J. C. Thiers, T. Levade, and R. Salvayre, “The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation,” The Journal of Biological Chemistry, vol. 271, no. 32, pp. 19251–19255, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. H. P. Deigner, R. Claus, G. A. Bonaterra et al., “Ceramide induces aSMase expression: implications for oxLDL-induced apoptosis,” FASEB Journal, vol. 15, no. 3, pp. 807–814, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Escargueil-Blanc, N. Andrieu-Abadie, S. Caspar-Bauguil et al., “Apoptosis and activation of the sphingomyelin-ceramide pathway induced by oxidized low density lipoproteins are not causally related in ECV-304 endothelial cells,” The Journal of Biological Chemistry, vol. 273, no. 42, pp. 27389–27395, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Harada-Shiba, M. Kinoshita, H. Kamido, and K. Shimokado, “Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms,” The Journal of Biological Chemistry, vol. 273, no. 16, pp. 9681–9687, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Kinscherf, R. Claus, H. P. Deigner et al., “Modified low density lipoprotein delivers substrate for ceramide formation and stimulates the sphingomyelin-ceramide pathway in human macrophages,” FEBS Letters, vol. 405, no. 1, pp. 55–59, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. C. R. Bollinger, V. Teichgräber, and E. Gulbins, “Ceramide-enriched membrane domains,” Biochimica et Biophysica Acta, vol. 1746, no. 3, pp. 284–294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Grandl, S. M. Bared, G. Liebisch, T. Werner, S. Barlage, and G. Schmitz, “E-LDL and Ox-LDL differentially regulate ceramide and cholesterol raft microdomains in human macrophages,” Cytometry Part A, vol. 69, no. 3, pp. 189–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. K. A. Walton, B. G. Gugiu, M. Thomas et al., “A role for neutral sphingomyelinase activation in the inhibition of LPS action by phospholipid oxidation products,” Journal of Lipid Research, vol. 47, no. 9, pp. 1967–1974, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. U. P. Steinbrecher, A. Gómez-Muñoz, and V. Duronio, “Acid shingomyelinase in macrophage apoptosis,” Current Opinion in Lipidology, vol. 15, no. 5, pp. 531–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Yang, Y. Yu, S. Sun, and P. J. Duerksen-Hughes, “Ceramide and other sphingolipids in cellular responses,” Cell Biochemistry and Biophysics, vol. 40, no. 3, pp. 323–350, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. P. V. Subbaiah, S. J. Billington, B. H. Jost, J. G. Songer, and Y. Langet, “Sphingomyelinase D, a novel probe for cellular sphingomyelin: effects on cholesterol homeostasis in human skin fibroblasts,” Journal of Lipid Research, vol. 44, no. 8, pp. 1574–1580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. I. Jialal and A. Chait, “Differences in the metabolism of oxidatively modified low density lipoprotein and acetylated low density lipoprotein by human endothelial cells: inhibition of cholesterol esterification by oxidatively modified low density lipoprotein,” Journal of Lipid Research, vol. 30, no. 10, pp. 1561–1568, 1989. View at Scopus
  71. J. D. Horton, J. L. Goldstein, and M. S. Brown, “SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver,” Journal of Clinical Investigation, vol. 109, no. 9, pp. 1125–1131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. F. J. Byfield, H. Aranda-Espinoza, V. G. Romanenko, G. H. Rothblat, and I. Levitan, “Cholesterol depletion increases membrane stiffness of aortic endothelial cells,” Biophysical Journal, vol. 87, no. 5, pp. 3336–3343, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Gaus, S. Le Lay, N. Balasubramanian, and M. A. Schwartz, “Integrin-mediated adhesion regulates membrane order,” Journal of Cell Biology, vol. 174, no. 5, pp. 725–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Gaus, T. Zech, and T. Harder, “Visualizing membrane microdomains by Laurdan 2-photon microscopy,” Molecular Membrane Biology, vol. 23, no. 1, pp. 41–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. R. Zidovetzki and I. Levitan, “Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies,” Biochimica et Biophysica Acta, vol. 1768, no. 6, pp. 1311–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. J. Brown and W. Jessup, “Oxysterols and atherosclerosis,” Atherosclerosis, vol. 142, no. 1, pp. 1–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. E. P. C. Kilsdonk, D. W. Morel, W. J. Johnson, and G. H. Rothblat, “Inhibition of cellular cholesterol efflux by 25-hydroxycholesterol,” Journal of Lipid Research, vol. 36, no. 3, pp. 505–516, 1995. View at Scopus
  78. N. Terasaka, S. Yu, L. Yvan-Charvet et al., “ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3701–3713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Gaus, L. Kritharides, G. Schmitz et al., “Apolipoprotein A-1 interaction with plasma membrane lipid rafts controls cholesterol export from macrophages,” The FASEB Journal, vol. 18, no. 3, pp. 574–576, 2004. View at Scopus
  80. C. Rentero, T. Zech, C. M. Quinn et al., “Functional implications of plasma membrane condensation for T cell activation,” PLoS ONE, vol. 3, no. 5, Article ID e2262, 2008. View at Publisher · View at Google Scholar · View at Scopus