About this Journal Submit a Manuscript Table of Contents
Journal of Lipids
Volume 2013 (2013), Article ID 261247, 13 pages
http://dx.doi.org/10.1155/2013/261247
Review Article

The Multifaceted Effects of Omega-3 Polyunsaturated Fatty Acids on the Hallmarks of Cancer

1Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
2Department of Imaging, Leicester Royal Infirmary, Leicester LE1 5WW, UK
3Department of Surgery, University Hospitals of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK

Received 20 January 2013; Revised 26 March 2013; Accepted 5 April 2013

Academic Editor: Angel Catala

Copyright © 2013 J. A. Stephenson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. M. N. Ratnayake and C. Galli, “Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper,” Annals of Nutrition and Metabolism, vol. 55, no. 1–3, pp. 8–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Burlingame, C. Nishida, R. Uauy, and R. Weisell, “Fats and fatty acids in human nutrition: introduction,” Annals of Nutrition and Metabolism, vol. 55, no. 1–3, pp. 5–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. A. Moore, E. Hurt, E. Yoder, H. Sprecher, and A. A. Spector, “Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid,” Journal of Lipid Research, vol. 36, no. 11, pp. 2433–2443, 1995. View at Scopus
  4. H. Sprecher, “The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 67, no. 2-3, pp. 79–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Lands, “A critique of paradoxes in current advice on dietary lipids,” Progress in Lipid Research, vol. 47, no. 2, pp. 77–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. C. Burdge and P. C. Calder, “Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults,” Reproduction Nutrition Development, vol. 45, no. 5, pp. 581–597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. G. Ackman, “Fatty acids in fish and shellfish,” in Fatty Acids in Foods and Their Health Implications, C. K. Chow, Ed., pp. 155–185, CRC Press, London, UK, 2008.
  8. J. T. Brenna, “Efficiency of conversion alpha-linolenic acid to long chain n-3 fatty acids in man,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 5, pp. 127–132, 2002.
  9. P. L. L. Goyens, M. E. Spilker, P. L. Zock, M. B. Katan, and R. P. Mensink, “Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 44–53, 2006. View at Scopus
  10. A. J. Sinclair, N. M. Attar-Bashi, and D. Lib, “What is the role of αt-linolenic acid for mammals?” Lipids, vol. 37, no. 12, pp. 1113–1123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Corridan and A. Wilson, “Health effects of n-3 polyunsaturated fatty acids,” in Encyclopedia of Human Nutrition, J. Strain, M. Sadler, and B. Caballero, Eds., vol. 1, pp. 757–769, Academic Press, New York, NY, USA, 1998.
  12. C. E. Eberhart and R. N. Dubois, “Eicosanoids and the gastrointestinal tract,” Gastroenterology, vol. 109, no. 1, pp. 285–301, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. C. E. Roynette, P. C. Calder, Y. M. Dupertuis, and C. Pichard, “n-3 polyunsaturated fatty acids and colon cancer prevention,” Clinical Nutrition, vol. 23, no. 2, pp. 139–151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Yaqoob, H. S. Pala, M. Cortina-Borja, E. A. Newsholme, and P. C. Calder, “Encapsulated fish oil enriched in α-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions,” European Journal of Clinical Investigation, vol. 30, no. 3, pp. 260–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. C. N. Serhan, S. Hong, K. Gronert et al., “Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals,” Journal of Experimental Medicine, vol. 196, no. 8, pp. 1025–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lee and D. H. Hwang, “Dietary fatty acids and eicosanoids,” in Fatty Acids in Foods and Their Health Implications, C. K. Chow, Ed., pp. 713–739, CRC Press, London, UK, 2008.
  17. N. G. Bazan, “Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 10, pp. 136–141, 2007.
  18. P. C. Calder, “Polyunsaturated fatty acids and inflammation,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 75, pp. 197–202, 2006.
  19. P. C. Calder, “n-3 polyuusaturated fatty acids, inflammation, and inflammatory diseases,” The American Journal of Clinical Nutrition, vol. 83, supplement 6, pp. 1505s–1519s, 2006.
  20. G. E. Caughey, E. Mantzioris, R. A. Gibson, L. G. Cleland, and M. J. James, “The effect on human tumor necrosis factor α and interleukin 1β production of diets enriched in n-3 fatty acids from vegetable oil or fish oil,” American Journal of Clinical Nutrition, vol. 63, no. 1, pp. 116–122, 1996. View at Scopus
  21. R. I. Sperling, A. I. Benincaso, C. T. Knoell, J. K. Larkin, K. F. Austen, and D. R. Robinson, “Dietary ω-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils,” Journal of Clinical Investigation, vol. 91, no. 2, pp. 651–660, 1993. View at Scopus
  22. P. C. Calder, “Dietary modification of inflammation with lipids,” Proceedings of the Nutrition Society, vol. 61, pp. 345–358, 2002.
  23. S. A. Schwartz, A. Hernandez, and B. M. Evers, “The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies,” Surgical Oncology, vol. 8, no. 3, pp. 143–153, 1999.
  24. V. M. Barbosa, E. A. Miles, C. Calhau, E. Lafuente, and P. C. Calder, “Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial,” Critical Care, vol. 14, no. 1, article R5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. C. Calder, “Symposium 4: hot topics in parenteral nutrition Rationale for using new lipid emulsions in parenteral nutrition and a review of the trials performed in adults,” Proceedings of the Nutrition Society, vol. 68, no. 3, pp. 252–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. C. Calder, G. L. Jensen, B. V. Koletzko, P. Singer, and G. J. A. Wanten, “Lipid emulsions in parenteral nutrition of intensive care patients: current thinking and future directions,” Intensive Care Medicine, vol. 36, no. 5, pp. 735–749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Friesecke, C. Lotze, J. Köhler, A. Heinrich, S. B. Felix, and P. Abel, “Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial,” Intensive Care Medicine, vol. 34, no. 8, pp. 1411–1420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Grimm, N. Mertes, C. Goeters et al., “Improved fatty acid and leukotriene pattern with a novel lipid emulsion in surgical patients,” European Journal of Nutrition, vol. 45, no. 1, pp. 55–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. R. Heller, T. Rössel, B. Gottschlich et al., “Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients,” International Journal of Cancer, vol. 111, no. 4, pp. 611–616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Heller, S. Rössler, R. J. Litz, et al., “Omega-3 fatty acids improve the diagnosis-related clinical outcome,” Critical Care Medicine, vol. 34, pp. 972–979, 2006.
  31. M. M. Berger, L. Tappy, J. P. Revelly et al., “Fish oil after abdominal aorta aneurysm surgery,” European Journal of Clinical Nutrition, vol. 62, no. 9, pp. 1116–1122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Grimm, “A balanced lipid emulsion—a new concept in parenteral nutrition,” Clinical Nutrition, vol. 1, no. 3, pp. 25–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Köller, M. Senkal, M. Kemen, W. König, V. Zumtobel, and G. Muhr, “Impact of omega-3 fatty acid enriched TPN on leukotriene synthesis by leukocytes after major surgery,” Clinical Nutrition, vol. 22, no. 1, pp. 59–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. B. J. Morlion, E. Torwesten, H. Lessire et al., “The effect of parenteral fish oil on leukocyte membrane fatty acid composition and leukotriene-synthesizing capacity in patients with postoperative trauma,” Metabolism: Clinical and Experimental, vol. 45, no. 10, pp. 1208–1213, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Mayer, S. Gokorsch, C. Fegbeutel et al., “Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 10, pp. 1321–1328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Tsekos, C. Reuter, P. Stehle, and G. Boeden, “Perioperative administration of parenteral fish oil supplements in a routine clinical setting improves patient outcome after major abdominal surgery,” Clinical Nutrition, vol. 23, no. 3, pp. 325–330, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Weiss, F. Meyer, B. Matthies, M. Pross, W. Koenig, and H. Lippert, “Immunomodulation by perioperative administration of n-3 fatty acids,” British Journal of Nutrition, vol. 87, no. 1, pp. S89–S94, 2002. View at Scopus
  38. M. W. Wichmann, P. Thul, H. D. Czarnetzki, B. J. Morlion, M. Kemen, and K. W. Jauch, “Evaluation of clinical safety and beneficial effects of a fish oil containing lipid emulsion (Lipoplus, MLF541): data from a prospective, randomized, multicenter trial,” Critical Care Medicine, vol. 35, no. 3, pp. 700–706, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Scopus
  40. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. H. Abou-El-Ala, K. W. Prasse, R. L. Farrell, R. W. Carroll, A. E. Wade, and O. R. Bunce, “Effects of D,L-2-difluoromethylornithine and indomethacin on mammary tumor promotion in rats fed high n-3 and/or n-6 fat diets,” Cancer Research, vol. 49, no. 6, pp. 1434–1440, 1989. View at Scopus
  42. D. P. Rose and J. M. Connolly, “Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture,” Cancer Research, vol. 50, no. 22, pp. 7139–7144, 1990. View at Scopus
  43. M. D. Brown, C. A. Hart, E. Gazi, S. Bagley, and N. W. Clarke, “Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs,” British Journal of Cancer, vol. 94, no. 6, pp. 842–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. N. Serhan, M. Arita, S. Hong, and K. Gotlinger, “Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers,” Lipids, vol. 39, no. 11, pp. 1125–1132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C. N. Serhan and J. Savill, “Resolution of inflammation: the beginning programs the end,” Nature Immunology, vol. 6, no. 12, pp. 1191–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Karin, “Nuclear factor-kappaB in cancer development and progression,” Nature, vol. 441, pp. 431–436, 2006.
  47. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Clevers, “At the crossroads of inflammation and cancer,” Cell, vol. 118, no. 6, pp. 671–674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. I. M. Berquin, Y. Min, R. Wu, et al., “Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids,” Journal of Clinical Investigation, vol. 117, pp. 1866–1875, 2007.
  50. P. Fedi, S. R. Tronick, and S. A. Aaronson, “Growth factors,” in Cancer Medicine, J. F. Holland, R. C. Bast, D. L. Morton, E. Frei, D. W. Kufe, and R. R. Weichselbaum, Eds., pp. 41–64, Williams and Wilkins, Baltimore, Md, USA, 1999.
  51. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 177–182, 1987. View at Scopus
  52. M. E. Lukashev and Z. Werb, “ECM signalling: orchestrating cell behaviour and misbehaviour,” Trends in Cell Biology, vol. 8, no. 11, pp. 437–441, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. K. W. Kinzler and B. Vogelstein, “Lessons from hereditary colorectal cancer,” Cell, vol. 87, no. 2, pp. 159–170, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. P. D. Schley, D. N. Brindley, and C. J. Field, “(n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells,” Journal of Nutrition, vol. 137, no. 3, pp. 548–553, 2007. View at Scopus
  55. B. S. Reddy, B. Simi, N. Patel, C. Aliaga, and C. V. Rao, “Effect of amount and types of dietary fat on intestinal bacterial 7α-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during different stages of colon tumor promotion,” Cancer Research, vol. 56, no. 10, pp. 2314–2320, 1996. View at Scopus
  56. M. F. McCarty, “Fish oil may impede tumour angiogenesis and invasiveness by down-regulating protein kinase C and modulating eicosanoid production,” Medical Hypotheses, vol. 46, no. 2, pp. 107–115, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Singh, R. Hamid, and B. S. Reddy, “Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer,” Cancer Research, vol. 57, no. 2, pp. 253–258, 1997. View at Scopus
  58. T. E. Novak, T. A. Babcock, D. H. Jho, W. S. Helton, and N. J. Espat, “NF-κB inhibition by ω-3 fatty acids modulates LPS-stimulated macrophage TNF-α-transcription,” American Journal of Physiology, vol. 284, no. 1, pp. L84–L89, 2003. View at Scopus
  59. N. K. Narayanan, B. A. Narayanan, M. Bosland, M. S. Condon, and D. Nargi, “Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells,” International Journal of Cancer, vol. 119, no. 7, pp. 1586–1598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. N. K. Narayanan, B. A. Narayanan, and B. S. Reddy, “A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors,” International Journal of Oncology, vol. 26, no. 3, pp. 785–792, 2005. View at Scopus
  61. P. K. Lala and C. Chakraborty, “Role of nitric oxide in carcinogenesis and tumour progression,” Lancet Oncology, vol. 2, no. 3, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. D. A. Wink, Y. Vodovotz, J. Laval, F. Laval, M. W. Dewhirst, and J. B. Mitchell, “The multifaceted roles of nitric oxide in cancer,” Carcinogenesis, vol. 19, no. 5, pp. 711–721, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Ohata, K. Fukuda, M. Takahashi, T. Sugimura, and K. Wakabayashi, “Suppression of nitric oxide production in lipopolysaccharide-stimulated macrophage cells by omega 3 polyunsaturated fatty acids,” Japanese Journal of Cancer Research, vol. 88, no. 3, pp. 234–237, 1997.
  64. S. C. Larsson, M. Kumlin, M. Ingelman-Sundberg, and A. Wolk, “Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms,” The American Journal of Clinical Nutrition, vol. 79, no. 6, pp. 935–945, 2004.
  65. E. J. Kim, W. Y. Kim, Y. H. Kang, Y. L. Ha, L. A. Bach, and J. H. Y. Park, “Inhibition of Caco-2 cell proliferation by (n-3) fatty acids: possible mediation by increased secretion of insulin-like growth factor binding protein-6,” Nutrition Research, vol. 20, no. 10, pp. 1409–1421, 2000. View at Scopus
  66. J. Singh, R. Hamid, and B. S. Reddy, “Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis,” Cancer Research, vol. 57, no. 16, pp. 3465–3470, 1997. View at Scopus
  67. S. L. Fu, Y. L. Wu, Y. P. Zhang, M. M. Qiao, and Y. Chen, “Anti-cancer effects of COX-2 inhibitors and their correlation with angiogenesis and invasion in gastric cancer,” World Journal of Gastroenterology, vol. 10, no. 13, pp. 1971–1974, 2004. View at Scopus
  68. M. Takahashi, M. Fukutake, T. Isoi et al., “Suppression of azoxymethane-induced rat colon carcinoma development by a fish oil component, docosahexaenoic acid (DHA),” Carcinogenesis, vol. 18, no. 7, pp. 1337–1342, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. C. V. Rao, Y. Hirose, C. Indranie, and B. S. Reddy, “Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids,” Cancer Research, vol. 61, no. 5, pp. 1927–1933, 2001. View at Scopus
  70. N. Kobayashi, R. J. Barnard, S. M. Henning, et al., “Effect of altering dietary omega-6/ omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2,” Clinical Cancer Research, vol. 12, pp. 4662–4670, 2006.
  71. Y. H. Jiang, J. R. Lupton, and R. S. Chapkin, “Dietary fish oil blocks carcinogen-induced down-regulation of colonic protein kinase C isozymes,” Carcinogenesis, vol. 18, no. 2, pp. 351–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Gökmen-Polar, N. R. Murray, M. A. Velasco, Z. Gatalica, and A. P. Fields, “Elevated protein kinase C βII is an early promotive event in colon carcinogenesis,” Cancer Research, vol. 61, no. 4, pp. 1375–1381, 2001. View at Scopus
  73. N. R. Murray, L. A. Davidson, R. S. Chapkin, W. C. Gustafson, D. G. Schattenberg, and A. P. Fields, “Overexpression of protein kinase C β(II) induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis,” Journal of Cell Biology, vol. 145, no. 4, pp. 699–711, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. N. R. Murray, C. Weems, L. Chen, et al., “Protein kinase C betaII and TGFbetaRII in omega-3 fatty acid mediated inhibition of colon carcinogenesis,” The Journal of Cell Biology, vol. 157, pp. 915–920, 2002.
  75. S. Sauma, Y. Zhongfa, S. Ohno, and E. Friedman, “Protein kinase Cβ1 and protein kinase Cβ2 activate p57 mitogen-activated protein kinase and block differentiation in colon carcinoma cells,” Cell Growth and Differentiation, vol. 7, no. 5, pp. 587–594, 1996. View at Scopus
  76. M. L. Saxon, X. Zhao, and J. D. Black, “Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ,” Journal of Cell Biology, vol. 126, no. 3, pp. 747–763, 1994. View at Publisher · View at Google Scholar · View at Scopus
  77. L. A. Davidson, R. E. Brown, W. C. L. Chang et al., “Morphodensitometric analysis of protein kinase C β(II) expression in rat colon: modulation by diet and relation to in situ cell proliferation and apoptosis,” Carcinogenesis, vol. 21, no. 8, pp. 1513–1519, 2000. View at Scopus
  78. V. Mengeaud, J. L. Nano, S. Fournel, and P. Rampal, “Effects of eicosapentaenoic acid, gamma-linolenic acid and prostaglandin E1 on three human colon carcinoma cell lines,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 47, no. 4, pp. 313–319, 1992. View at Publisher · View at Google Scholar · View at Scopus
  79. W. S. Tsai, H. Nagawa, S. Kaizaki, T. Tsuruo, and T. Muto, “Inhibitory effects of n-3 polyunsaturated fatty acids on sigmoid colon cancer transformants,” Journal of Gastroenterology, vol. 33, no. 2, pp. 206–212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Y. Chen and N. W. Istfan, “Docosahexaenoic acid is a potent inducer of apoptosis in HT-29 colon cancer cells,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 63, no. 5, pp. 301–308, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. R. G. Clarke, E. K. Lund, P. Latham, A. C. Pinder, and I. T. Johnson, “Effect of eicosapentaenoic acid on the proliferation and incidence of apoptosis in the colorectal cell line HT29,” Lipids, vol. 34, pp. 1287–1295, 1999.
  82. P. Palozza, G. Calviello, N. Maggiano, P. Lanza, F. O. Ranelletti, and G. M. Bartoli, “Beta-carotene antagonizes the effects of eicosapentaenoic acid on cell growth and lipid peroxidation in WiDr adenocarcinoma cells,” Free Radical Biology and Medicine, vol. 28, no. 2, pp. 228–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  83. M. L. Jourdan, K. Mahéo, A. Barascu et al., “Increased BRCA1 protein in mammary tumours of rats fed marine omega-3 fatty acids,” Oncology Reports, vol. 17, no. 4, pp. 713–719, 2007. View at Scopus
  84. H. Gleissman, R. Yang, K. Martinod et al., “Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates,” FASEB Journal, vol. 24, no. 3, pp. 906–915, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Lindskog, H. Gleissman, F. Ponthan, J. Castro, P. Kogner, and J. I. Johnsen, “Neuroblastoma cell death in response to docosahexaenoic acid: sensitization to chemotherapy and arsenic-induced oxidative stress,” International Journal of Cancer, vol. 118, no. 10, pp. 2584–2593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Serini, E. Piccioni, N. Merendino, and G. Calviello, “Dietary polyunsaturated fatty acids as inducers of apoptosis: implications for cancer,” Apoptosis, vol. 14, no. 2, pp. 135–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. K. Arita, H. Kobuchi, T. Utsumi et al., “Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids,” Biochemical Pharmacology, vol. 62, no. 7, pp. 821–828, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Y. Fan, T. E. Spencer, N. Wang, M. P. Moyer, and R. S. Chapkin, “Chemopreventive n-3 fatty acids activate RXRα in colonocytes,” Carcinogenesis, vol. 24, no. 9, pp. 1541–1548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Chambrier, J. P. Bastard, J. Rieusset et al., “Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γ,” Obesity Research, vol. 10, no. 6, pp. 518–525, 2002. View at Scopus
  90. H. Zand, A. Rhimipour, M. Bakhshayesh, M. Shafiee, I. Nour Mohammadi, and S. Salimi, “Involvement of PPAR-γ and p53 in DHA-induced apoptosis in Reh cells,” Molecular and Cellular Biochemistry, vol. 304, no. 1-2, pp. 71–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. B. Sun, Y. L. Wu, S. N. Wang et al., “The effects of sulindac on induction of apoptosis and expression of cyclooxygenase-2 and Bcl-2 in human hepatocellular carcinoma cells,” Zhonghua Xiaohua Zazhi, vol. 22, pp. 338–340, 2002.
  92. H. Gleissman, J. I. Johnsen, and P. Kogner, “Omega-3 fatty acids in cancer, the protectors of good and the killers of evil?” Experimental Cell Research, vol. 316, no. 8, pp. 1365–1373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Calviello, F. Di Nicuolo, S. Serini et al., “Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil,” Cancer Chemotherapy and Pharmacology, vol. 55, no. 1, pp. 12–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Danbara, T. Yuri, M. Tsujita-Kyutoku et al., “Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells,” Nutrition and Cancer, vol. 50, no. 1, pp. 71–79, 2004. View at Scopus
  95. L. C. M. Chiu and J. M. F. Wan, “Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression,” Cancer Letters, vol. 145, no. 1-2, pp. 17–27, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. B. A. Narayanan, N. K. Narayanan, and B. S. Reddy, “Docosa-hexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells,” International Journal of Oncology, vol. 19, pp. 1255–1262, 2001.
  97. T. Yamagami, C. D. Porada, R. S. Pardini, E. D. Zanjani, and G. Almeida-Porada, “Docosahexaenoic acid induces dose dependent cell death in an early undifferentiated subtype of acute myeloid leukemia cell line,” Cancer Biology and Therapy, vol. 8, no. 4, pp. 331–337, 2009. View at Scopus
  98. M. Tsujii and R. N. DuBois, “Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2,” Cell, vol. 83, no. 3, pp. 493–501, 1995. View at Scopus
  99. M. Y. Hong, J. R. Lupton, J. S. Morris et al., “Dietary fish oil reduces O6-methylguanine DNA adduct levels in rat colon in part by increasing apoptosis during tumor initiation,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 8, pp. 819–826, 2000. View at Scopus
  100. J. Zha, H. Harada, E. Yang, J. Jockel, and S. J. Korsmeyer, “Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L),” Cell, vol. 87, no. 4, pp. 619–628, 1996. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Yang, J. Zha, J. Jockel, L. H. Boise, C. B. Thompson, and S. J. Korsmeyer, “Bad, a heterodimeric partner for Bcl-x(L), and Bcl-2, displaces Bax and promotes cell death,” Cell, vol. 80, no. 2, pp. 285–291, 1995. View at Scopus
  102. L. Del Peso, M. González-García, C. Page, R. Herrera, and G. Nuñez, “Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt,” Science, vol. 278, no. 5338, pp. 687–689, 1997. View at Publisher · View at Google Scholar · View at Scopus
  103. S. R. Datta, H. Dudek, T. Xu et al., “Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery,” Cell, vol. 91, no. 2, pp. 231–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Hayflick, “Mortality and immortality at the cellular level. A review,” Biochemistry, vol. 62, no. 11, pp. 1180–1190, 1997. View at Scopus
  105. W. E. Wright, O. M. Pereira-Smith, and J. W. Shay, “Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts,” Molecular and Cellular Biology, vol. 9, no. 7, pp. 3088–3092, 1989. View at Scopus
  106. G. C. Blobe, L. M. Obeid, and Y. A. Hannun, “Regulation of protein kinase C and role in cancer biology,” Cancer and Metastasis Reviews, vol. 13, no. 3-4, pp. 411–431, 1994. View at Publisher · View at Google Scholar · View at Scopus
  107. E. D. Collett, L. A. Davidson, Y. Y. Fan, J. R. Lupton, and R. S. Chapkin, “n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes,” American Journal of Physiology, vol. 280, no. 5, pp. C1066–C1075, 2001. View at Scopus
  108. G. Liu, D. M. Bibus, A. M. Bode, W. Y. Ma, R. T. Holman, and Z. Dong, “Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7510–7515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. F. Cannizzo Jr. and S. A. Broitman, “Postpromotional effects of dietary marine or safflower oils on large bowel or pulmonary implants of CT-26 in mice,” Cancer Research, vol. 49, no. 15, pp. 4289–4294, 1989. View at Scopus
  110. J. E. Paulsen, I. K. Elvsaas, I. L. Steffensen, and J. Alexander, “A fish oil derived concentrate enriched in eicosapentaenoic and docosahexaenoic acid as ethyl ester suppresses the formation and growth of intestinal polyps in the Min mouse,” Carcinogenesis, vol. 18, no. 10, pp. 1905–1910, 1997. View at Publisher · View at Google Scholar · View at Scopus
  111. M. D. Boudreau, K. H. Sohn, S. H. Rhee, S. W. Lee, J. D. Hunt, and D. H. Hwang, “Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways,” Cancer Research, vol. 61, no. 4, pp. 1386–1391, 2001. View at Scopus
  112. G. Calviello, F. Di Nicuolo, S. Gragnoli et al., “n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1α induction pathway,” Carcinogenesis, vol. 25, no. 12, pp. 2303–2310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. B. S. Reddy and H. Maruyama, “Effect of dietary fish oil on azoxymethane-induced colon carcinogenesis in male F344 rats,” Cancer Research, vol. 46, no. 7, pp. 3367–3370, 1986. View at Scopus
  114. T. Minoura, T. Takata, M. Sakaguchi et al., “Effect of dietary eicosapentaenoic acid on azoxymethane-induced colon carcinogenesis in rats,” Cancer Research, vol. 48, no. 17, pp. 4790–4794, 1988. View at Scopus
  115. C. W. Hendrickse, M. R. B. Keighley, and J. P. Neoptolemos, “Dietary ω-3 fats reduce proliferation and tumor yields at colorectal anastomosis in rats,” Gastroenterology, vol. 109, no. 2, pp. 431–439, 1995. View at Publisher · View at Google Scholar · View at Scopus
  116. L. A. Davidson, J. L. Lupton, Y. H. Jiang, and R. S. Chapkin, “Carcinogen and dietary lipid regulate ras expression and localization in rat colon without affecting farnesylation kinetics,” Carcinogenesis, vol. 20, no. 5, pp. 785–791, 1999. View at Scopus
  117. Y. E. M. Dommels, G. M. Alink, P. J. Van Bladeren, and B. Van Ommen, “Dietary n-6 and n-3 polyunsaturated fatty acids and colorectal carcinogenesis: results from cultured colon cells, animal models and human studies,” Environmental Toxicology and Pharmacology, vol. 11, pp. 297–308, 2002.
  118. B. S. Reddy, C. Burill, and J. Rigotty, “Effect of diets high in ω-3 and ω-6 fatty acids on initiation and postinitiation stages of colon carcinogenesis,” Cancer Research, vol. 51, no. 2, pp. 487–491, 1991. View at Scopus
  119. H. Gleissman, L. Segerström, M. Hamberg et al., “Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo,” International Journal of Cancer, vol. 128, no. 7, pp. 1703–1711, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. M. V. Swamy, B. Citineni, J. M. R. Patlolla, A. Mohammed, Y. Zhang, and C. V. Rao, “Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids,” Nutrition and Cancer, vol. 60, no. 1, pp. 81–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Hanahan and J. Folkman, “Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis,” Cell, vol. 86, no. 3, pp. 353–364, 1996. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Spencer, C. Mann, M. Metcalfe et al., “The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential,” European Journal of Cancer, vol. 45, no. 12, pp. 2077–2086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Tsuzuki, A. Shibata, Y. Kawakami, K. Nakagawa, and T. Miyazawa, “Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells,” Journal of Nutrition, vol. 137, no. 3, pp. 641–646, 2007. View at Scopus
  124. M. Tsuji, S. I. Murota, and I. Morita, “Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 68, no. 5, pp. 337–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. S. P. Yang, I. Morita, and S. I. Murota, “Eicosapentaenoic acid attenuates vascular endothelial growth factor-induced proliferation via inhibiting flk-1 receptor expression in bovine carotid artery endothelial cells,” Journal of Cellular Physiology, vol. 176, pp. 342–349, 1998.
  126. L. Yuan, M. Yoshida, and P. F. Davis, “Inhibition of pro-angiogenic factors by a lipid-rich shark extract,” Journal of Medicinal Food, vol. 9, no. 3, pp. 300–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Ross, J. Glomset, B. Kariya, and L. Harker, “A platelet dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 71, no. 4, pp. 1207–1210, 1974. View at Scopus
  128. C. H. Heldin and B. Westermark, “Mechanism of action and in vivo role of platelet-derived growth factor,” Physiological Reviews, vol. 79, no. 4, pp. 1283–1316, 1999. View at Scopus
  129. P. L. Fox and P. E. DiCorleto, “Fish oils inhibit endothelial cell production of platelet-derived growth factor-like protein,” Science, vol. 241, no. 4864, pp. 453–456, 1988. View at Scopus
  130. T. Terano, T. Shiina, and Y. Tamura, “Eicosapentaenoic acid suppressed the proliferation of vascular smooth muscle cells through modulation of various steps of growth signals,” Lipids, vol. 31, no. 3, pp. S301–S304, 1996. View at Scopus
  131. R. Stein Werblowsky, “Prostaglandin and cancer,” Oncology, vol. 30, no. 2, pp. 169–176, 1974. View at Scopus
  132. B. S. Reddy, J. M. Patlolla, B. Simi, S. H. Wang, and C. V. Rao, “Prevention of colon cancer by low doses of celecoxib, a cyclooxygenase inhibitor, administered in diet rich in ω-3 polyunsaturated fatty acids,” Cancer Research, vol. 65, no. 17, pp. 8022–8027, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Dimmeler, C. Hermann, J. Galle, and A. M. Zeiher, “Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 3, pp. 656–664, 1999. View at Scopus
  134. L. Rössig, B. Fichtlscherer, K. Breitschopf et al., “Nitric oxide inhibits caspase-3 by S-nitrosation in vivo,” Journal of Biological Chemistry, vol. 274, no. 11, pp. 6823–6826, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. F. Cianchi, C. Cortesini, P. Bechi et al., “Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer,” Gastroenterology, vol. 121, no. 6, pp. 1339–1347, 2001. View at Scopus
  136. F. Cianchi, C. Cortesini, O. Fantappiè et al., “Cyclooxygenase-2 activation mediates the proangiogenic effect of nitric oxide in colorectal cancer,” Clinical Cancer Research, vol. 10, no. 8, pp. 2694–2704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Ziche, L. Morbidelli, R. Choudhuri et al., “Nitric oxide synthase mediates vascular endothelial growth factor but not basic fibroblast growth factor induced angiogenesis,” FASEB Journal, vol. 11, no. 3, p. A196, 1997. View at Scopus
  138. W. Komatsu, K. Ishihara, M. Murata, H. Saito, and K. Shinohara, “Docosahexaenoic acid suppresses nitric oxide production and inducible nitric oxide synthase expression in interferon-γ plus lipopolysaccharide-stimulated murine macrophages by inhibiting the oxidative stress,” Free Radical Biology and Medicine, vol. 34, no. 8, pp. 1006–1016, 2003. View at Publisher · View at Google Scholar · View at Scopus
  139. D. R. Jeyarajah, M. Kielar, J. Penfield, and C. Y. Lu, “Docosahexaenoic acid, a component of fish oil, inhibits nitric oxide production in vitro,” Journal of Surgical Research, vol. 83, no. 2, pp. 147–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. V. Boutard, B. Fouqueray, C. Philippe, J. Perez, and L. Baud, “Fish oil supplementation and essential fatty acid deficiency reduce nitric oxide synthesis by rat macrophages,” Kidney International, vol. 46, no. 5, pp. 1280–1286, 1994. View at Scopus
  141. B. A. Narayanan, N. K. Narayanan, B. Simi, and B. S. Reddy, “Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells,” Cancer Research, vol. 63, no. 5, pp. 972–979, 2003. View at Scopus
  142. B. A. Narayanan, N. K. Narayanan, D. Desai, B. Pittman, and B. S. Reddy, “Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and β-catenin pathways in colon cancer cells,” Carcinogenesis, vol. 25, no. 12, pp. 2443–2449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. R. Tevar, D. H. Jho, T. Babcock, W. S. Helton, and N. J. Espat, “ω-3 fatty acid supplementation reduces tumor growth and vascular endothelial growth factor expression in a model of progressive non-metastasizing malignancy,” Journal of Parenteral and Enteral Nutrition, vol. 26, no. 5, pp. 285–289, 2002. View at Scopus
  144. D. P. Rose and J. M. Connolly, “Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice,” International Journal of Oncology, vol. 15, no. 5, pp. 1011–1015, 1999. View at Scopus
  145. M. Mukutmoni-Norris, N. E. Hubbard, and K. L. Erickson, “Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil,” Cancer Letters, vol. 150, no. 1, pp. 101–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Bommareddy, B. L. Arasada, D. P. Mathees, and C. Dwivedi, “Chemopreventive effects of dietary flaxseed on colon tumor development,” Nutrition and Cancer, vol. 54, no. 2, pp. 216–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. M. B. Sporn, “The war on cancer,” Lancet, vol. 347, pp. 1377–1381, 1996.
  148. A. E. Aplin, A. Howe, S. K. Alahari, and R. L. Juliano, “Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins,” Pharmacological Reviews, vol. 50, no. 2, pp. 197–263, 1998. View at Scopus
  149. G. Christofori and H. Semb, “The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene,” Trends in Biochemical Sciences, vol. 24, no. 2, pp. 73–76, 1999. View at Publisher · View at Google Scholar · View at Scopus
  150. M. B. Schaefer, A. Wenzel, T. Fischer et al., “Fatty acids differentially influence phosphatidylinositol 3-kinase signal transduction in endothelial cells: impact on adhesion and apoptosis,” Atherosclerosis, vol. 197, no. 2, pp. 630–637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. S. Ambs, S. P. Hussain, and C. C. Harris, “Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression,” FASEB Journal, vol. 11, no. 6, pp. 443–448, 1997. View at Scopus
  152. L. C. Jadeski, C. Chakraborty, and P. K. Lala, “Role of nitric oxide in tumour progression with special reference to a murine breast cancer model,” Canadian Journal of Physiology and Pharmacology, vol. 80, no. 2, pp. 125–135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  153. J. P. Cooke and D. W. Losordo, “Nitric oxide and angiogenesis,” Circulation, vol. 105, no. 18, pp. 2133–2135, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Yi, Q. Y. Zhang, and M. T. Mi, “Role of Rho GTPase in inhibiting metastatic ability of human prostate cancer cell line PC-3 by omega-3 polyunsaturated fatty acid,” Chinese Journal of Cancer, vol. 26, no. 12, pp. 1281–1286, 2007. View at Scopus
  155. M. Goua, S. Mulgrew, J. Frank, D. Rees, A. A. Sneddon, and K. W. J. Wahle, “Regulation of adhesion molecule expression in human endothelial and smooth muscle cells by omega-3 fatty acids and conjugated linoleic acids: involvement of the transcription factor NF-κB?” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 78, no. 1, pp. 33–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. R. Ohno, K. Yoshinaga, T. Fujita et al., “Depth of invasion parallels increased cyclooxygenase-2 levels in patients with gastric carcinoma,” Cancer, vol. 91, pp. 1876–1881, 2001.
  157. M. Joo, H. K. Lee, and Y. K. Kang, “Expression of E-cadherin, β-catenin, CD44s and CD44v6 in gastric adenocarcinoma: relationship with lymph node metastasis,” Anticancer Research B, vol. 23, no. 2, pp. 1581–1588, 2003. View at Scopus
  158. I. M. Berquin, I. J. Edwards, and Y. Q. Chen, “Multi-targeted therapy of cancer by omega-3 fatty acids,” Cancer Letters, vol. 269, no. 2, pp. 363–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. S. Iwamoto, H. Senzaki, Y. Kiyozuka et al., “Effects of fatty acids on liver metastasis of ACL-15 rat colon cancer cells,” Nutrition and Cancer, vol. 31, no. 2, pp. 143–150, 1998. View at Scopus
  160. M. Kontogiannea, A. Gupta, F. Ntanios, T. Graham, P. Jones, and S. Meterissian, “ω-3 fatty acids decrease endothelial adhesion of human colorectal carcinoma cells,” Journal of Surgical Research, vol. 92, no. 2, pp. 201–205, 2000. View at Publisher · View at Google Scholar · View at Scopus
  161. D. P. Rose, J. M. Connolly, and M. Coleman, “Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice,” Clinical Cancer Research, vol. 2, no. 10, pp. 1751–1756, 1996. View at Scopus
  162. M. Lucas, E. Dewailly, G. Muckle et al., “Gestational age and birth weight in relation to n-3 fatty acids among inuit (Canada),” Lipids, vol. 39, no. 7, pp. 617–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  163. A. P. Lanier, P. Holck, G. Ehrsam Day, and C. Key, “Childhood cancer among Alaska Natives,” Pediatrics, vol. 112, no. 5, article e396, 2003. View at Scopus
  164. C. H. MacLean, S. J. Newberry, W. A. Mojica et al., “Effects of omega-3 fatty acids on cancer risk: a systematic review,” Journal of the American Medical Association, vol. 295, no. 4, pp. 403–415, 2006. View at Publisher · View at Google Scholar
  165. Y. Q. Chen, I. M. Berquin, L. W. Daniel et al., “Omega-3 fatty acids and cancer risk,” Journal of the American Medical Association, vol. 296, no. 3, pp. 278–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  166. D. J. Hunter, E. B. Rimm, F. M. Sacks et al., “Comparison of measures of fatty acid intake by subcutaneous fat aspirate, food frequency questionnaire, and diet records in a free-living population of US men,” American Journal of Epidemiology, vol. 135, no. 4, pp. 418–427, 1992. View at Scopus
  167. J. M. Ward and D. E. Devor-Henneman, “Mouse models of human familial cancer syndromes,” Toxicologic Pathology, vol. 32, supplement 1, pp. 90–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  168. K. Maddison and A. R. Clarke, “New approaches for modelling cancer mechanisms in the mouse,” Journal of Pathology, vol. 205, no. 2, pp. 181–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  169. P. L. Zock and M. B. Katan, “Linoleic acid intake and cancer risk: a review and meta-analysis,” American Journal of Clinical Nutrition, vol. 68, no. 1, pp. 142–153, 1998. View at Scopus
  170. C. H. Maclean, S. J. Newberry, W. A. Mojica et al., “Effects of omega-3 fatty acids on cancer,” Evidence Report, no. 113, pp. 1–4, 2005. View at Scopus
  171. R. S. Pardini, “Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents,” Chemico-Biological Interactions, vol. 162, no. 2, pp. 89–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. W. E. Hardman, C. P. R. Avula, G. Fernandes, and I. L. Cameron, “Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts,” Clinical Cancer Research, vol. 7, no. 7, pp. 2041–2049, 2001. View at Scopus
  173. Y. Shao, L. Pardini, and R. S. Pardini, “Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1,” Lipids, vol. 30, no. 11, pp. 1035–1045, 1995. View at Publisher · View at Google Scholar · View at Scopus
  174. J. Chen, E. Hui, T. Ip, and L. U. Thompson, “Dietary flaxseed enhances the inhibitory effect of tamoxifen on the growth of estrogen-dependent human breast cancer (MCF-7) in nude mice,” Clinical Cancer Research, vol. 10, no. 22, pp. 7703–7711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  175. P. Bougnoux, N. Hajjaji, M. N. Ferrasson, B. Giraudeau, C. Couet, and O. Le Floch, “Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial,” British Journal of Cancer, vol. 101, no. 12, pp. 1978–1985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. A. Rusca, A. F. D. Di Stefano, M. V. Doig, C. Scarsi, and E. Perucca, “Relative bioavailability and pharmacokinetics of two oral formulations of docosahexaenoic acid/eicosapentaenoic acid after multiple-dose administration in healthy volunteers,” European Journal of Clinical Pharmacology, vol. 65, no. 5, pp. 503–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  177. C. E. Childs, M. Romeu-Nadal, G. C. Burdge, and P. C. Calder, “Gender differences in the n-3 fatty acid content of tissues,” Proceedings of the Nutrition Society, vol. 67, no. 1, pp. 19–27, 2008. View at Publisher · View at Google Scholar · View at Scopus
  178. L. M. Arterburn, E. B. Hall, and H. Oken, “Distribution, interconversion, and dose response of n-3 fatty acids in humans,” American Journal of Clinical Nutrition, vol. 83, supplement 6, pp. 1467S–1476S, 2006. View at Scopus
  179. R. A. Murphy, M. Mourtzakis, and V. C. Mazurak, “n-3 polyunsaturated fatty acids: the potential role for supplementation in cancer,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 15, no. 3, pp. 246–251, 2012.