About this Journal Submit a Manuscript Table of Contents
Journal of Lipids
Volume 2013 (2013), Article ID 684903, 8 pages
http://dx.doi.org/10.1155/2013/684903
Review Article

High-Density Lipoproteins and the Immune System

Division of Physiology and Metabolism, University of Hyogo, 13-71 Kitaohji-cho, Akashi 673-8588, Japan

Received 5 October 2012; Revised 28 December 2012; Accepted 31 December 2012

Academic Editor: Maurizio Averna

Copyright © 2013 Hidesuke Kaji. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. L. Dragnov and B. N. La Du, “Pharmacogenetics of paraoxonases: a brief review,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 1, pp. 78–88, 2004.
  2. A. J. Luis, “Atherosclerosis,” Nature, vol. 407, no. 6801, pp. 233–241, 2000.
  3. D. M. Shih, L. Gu, Y. R. Xia et al., “Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis,” Nature, vol. 394, no. 6690, pp. 284–287, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Navab, G. M. Ananthramaiah, S. T. Reddy et al., “The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL,” Journal of Lipid Research, vol. 45, no. 6, pp. 993–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Vaisar, S. Pennathur, P. S. Green, et al., “Shotgun proteomics implicates protease inhibition and complement activation in the anti-inflammatory properties of HDL,” The Journal of Clinical Investigation, vol. 117, no. 3, pp. 746–756, 2007. View at Publisher · View at Google Scholar
  6. S. M. Gordon, D. Jingyuan, L. J. Lu, and W. S. Davidson, “Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography,” Journal of Proteome Research, vol. 9, no. 10, pp. 5239–5249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Von Eckardstein, Y. Huang, and G. Assmann, “Physiological role and clinical relevance of high-density lipoprotein subclasses,” Current Opinion in Lipidology, vol. 5, no. 6, pp. 404–416, 1994. View at Scopus
  8. H. O. Mowri, W. Patsch, L. C. Smith, A. M. Gotto, and J. R. Patsch, “Different reactivities of high density lipoprotein2 subfractions with hepatic lipase,” Journal of Lipid Research, vol. 33, no. 9, pp. 1269–1279, 1992. View at Scopus
  9. T. Miida, M. Kawano, C. J. Fielding, and P. E. Fielding, “Regulation of the concentration of preβ high-density lipoprotein in normal plasma by cell membranes and lecithin-cholesterol acyltransferase activity,” Biochemistry, vol. 31, no. 45, pp. 11112–11117, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Gu, M. K. Jones, J. Chen et al., “Structures of discoidal high density lipoproteins: a combined computational-experimental approach,” The Journal of Biological Chemistry, vol. 285, no. 7, pp. 4652–4665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Connelly and D. L. Williams, “Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids,” Current Opinion in Lipidology, vol. 15, no. 3, pp. 287–295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Kennedy, G. C. Barrera, K. Nakamura et al., “ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation,” Cell Metabolism, vol. 1, no. 2, pp. 121–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. S. Rosenson, H. B. Brewer Jr., M. J. Chapman, et al., “HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardio-vascular events,” Clinical Chemistry, vol. 57, no. 3, pp. 392–410, 2011. View at Publisher · View at Google Scholar
  14. L. Calabresi, M. Gomaraschi, and G. Franceschini, “Endothelial protection by high-density lipoproteins: from bench to bedside,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 10, pp. 1724–1731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Murphy, J. P. F. Chin-Dusting, D. Sviridov, and K. J. Woollard, “The anti inflammatory effects of high density lipoproteins,” Current Medicinal Chemistry, vol. 16, no. 6, pp. 667–675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. D. Norata, A. Pirillo, and A. L. Catapano, “HDLs, immunity, and atherosclerosis,” Current Opinion in Lipidology, vol. 22, no. 5, pp. 410–416, 2011.
  17. G. D. Norata, A. Pirillo, E. Ammirati, and A. L. Catapano, “Emerging role of high density lipoproteins as a player in the immune system,” Atherosclerosis, vol. 220, no. 1, pp. 11–21, 2012. View at Publisher · View at Google Scholar
  18. C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, “Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility,” Annual Review of Immunology, vol. 23, pp. 337–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Bottazzi, A. Doni, C. Garlanda, and A. Mantovani, “An integrated view of humoral innate immunity: pentraxins as a paradigm,” Annual Review of Immunology, vol. 28, pp. 157–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Ricklin, G. Hajishengallis, K. Yang, and J. D. Lambris, “Complement: a key system for immune surveillance and homeostasis,” Nature Immunology, vol. 11, no. 9, pp. 785–797, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. G. Cabana, J. N. Siegel, and S. M. Sabesin, “Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins,” Journal of Lipid Research, vol. 30, no. 1, pp. 39–49, 1989. View at Scopus
  22. M. Menschikowski, A. Hagelgans, and G. Siegert, “Secretory phospholipase A2 of group IIA: is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases?” Prostaglandins and Other Lipid Mediators, vol. 79, no. 1-2, pp. 1–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Navarro, R. Carpintero, S. Acín et al., “Immune-regulation of the apolipoprotein A-I/C-III/A-IV gene cluster in experimental inflammation,” Cytokine, vol. 31, no. 1, pp. 52–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Tape and R. Kisilevsky, “Apolipoprotein A-I and apolipoprotein SAA half-lives during acute inflammation and amyloidogenesis,” Biochimica et Biophysica Acta, vol. 1043, no. 3, pp. 295–300, 1990. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. Coetzee, A. F. Strachan, and D. R. Van Der Westhuyzen, “Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition,” The Journal of Biological Chemistry, vol. 261, no. 21, pp. 9644–9651, 1986. View at Scopus
  26. K. R. Feingold, R. A. Memon, A. H. Moser, and C. Grunfeld, “Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response,” Atherosclerosis, vol. 139, no. 2, pp. 307–315, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Cao, D. M. Stafforini, G. A. Zimmerman, T. M. McIntyre, and S. M. Prescott, “Expression of plasma platelet-activating factor acetylhydrolase is transcriptionally regulated by mediators of inflammation,” The Journal of Biological Chemistry, vol. 273, no. 7, pp. 4012–4020, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Memon, J. Fuller, A. H. Moser, K. R. Feingold, and C. Grunfeld, “In vivo regulation of plasma platelet-activating factor acetylhydrolase during the acute phase response,” American Journal of Physiology, vol. 277, no. 1, part 2, pp. R94–R103, 1999. View at Scopus
  29. W. Khovidhunkit, M. S. Kim, R. A. Memon et al., “Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host,” Journal of Lipid Research, vol. 45, no. 7, pp. 1169–1196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. C. P. Chung, A. Oeser, P. Raggi et al., “Lipoprotein subclasses determined by nuclear magnetic resonance spectroscopy and coronary atherosclerosis in patients with rheumatoid arthritis,” The Journal of Rheumatology, vol. 37, no. 8, pp. 1633–1638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Rittirsch, M. A. Flierl, and P. A. Ward, “Harmful molecular mechanisms in sepsis,” Nature Reviews Immunology, vol. 8, no. 10, pp. 776–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. M. Wurfel, S. T. Kunitake, H. Lichenstein, J. P. Kane, and S. D. Wright, “Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a cofactor in the neutralization of LPS,” The Journal of Experimental Medicine, vol. 180, no. 3, pp. 1025–1035, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Cai, A. Ji, F. C. De Beer, L. R. Tannock, and D. R. Van Der Westhuyzen, “SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance,” The Journal of Clinical Investigation, vol. 118, no. 1, pp. 364–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Guo, Z. Song, M. Li et al., “Scavenger receptor BI protects against septic death through its role in modulating inflammatory response,” The Journal of Biological Chemistry, vol. 284, no. 30, pp. 19826–19834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. M. Levels, D. Pajkrt, M. Schultz et al., “Alterations in lipoprotein homeostasis during human experimental endotoxemia and clinical sepsis,” Biochimica et Biophysica Acta, vol. 1771, no. 12, pp. 1429–1438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. A. Brown and E. London, “Functions of lipid rafts in biological membranes,” Annual Review of Cell and Developmental Biology, vol. 14, pp. 111–136, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. T. J. McIntosh, A. Vidal, and S. A. Simon, “Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts,” Biophysical Journal, vol. 85, no. 3, pp. 1656–1666, 2003. View at Scopus
  38. A. J. Murphy, K. J. Woollard, A. Suhartoyo et al., “Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 6, pp. 1333–1341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. D. Landry, M. Denis, S. Nandi, S. Bell, A. M. Vaughan, and X. Zha, “ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions,” The Journal of Biological Chemistry, vol. 281, no. 47, pp. 36091–36101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. J. Murphy, K. J. Woollard, A. Hoang et al., “High-density lipoprotein reduces the human monocyte inflammatory response,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 11, pp. 2071–2077, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. E. M. Hiltbold, N. J. Poloso, and P. A. Roche, “MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse,” Journal of Immunology, vol. 170, no. 3, pp. 1329–1338, 2003. View at Scopus
  42. N. J. Poloso and P. A. Roche, “Association of MHC class II-peptide complexes with plasma membrane lipid microdomains,” Current Opinion in Immunology, vol. 16, no. 1, pp. 103–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Setterblad, C. Roucard, C. Bocaccio, J. P. Abastado, D. Charron, and N. Mooney, “Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells,” Journal of Leukocyte Biology, vol. 74, no. 1, pp. 40–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. K. D. Kim, H. Y. Lim, H. G. Lee et al., “Apolipoprotein A-I induces IL-10 and PGE2 production in human monocytes and inhibits dendritic cell differentiation and maturation,” Biochemical and Biophysical Research Communications, vol. 338, no. 2, pp. 1126–1136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Edfeldt, J. Swedenborg, G. K. Hansson, and Z. Q. Yan, “Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation,” Circulation, vol. 105, no. 10, pp. 1158–1161, 2002. View at Scopus
  47. X. H. Xu, P. K. Shah, E. Faure et al., “Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL,” Circulation, vol. 104, no. 25, pp. 3103–3108, 2001. View at Scopus
  48. L. Perrin-Cocon, O. Diaz, M. Carreras, et al., “High-density lipoprotein phospholipids interfere with dendritic cell Th1 functional maturation,” Immunobiology, vol. 217, no. 1, pp. 91–99, 2012. View at Publisher · View at Google Scholar
  49. A. J. Sadler and B. R. G. Williams, “Interferon-inducible antiviral effectors,” Nature Reviews Immunology, vol. 8, no. 7, pp. 559–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Suzuki, D. K. Pritchard, L. Becker et al., “High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide,” Circulation, vol. 122, no. 19, pp. 1919–1927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. L. E. Smythies, C. Roger White, A. Maheshwari et al., “Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages,” American Journal of Physiology, vol. 298, no. 6, pp. C1538–C1548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Scanu and C. Edelstein, “HDL: bridging past and present with a look at the future,” The FASEB Journal, vol. 22, no. 12, pp. 4044–4054, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Yatomi, “Plasma sphingosine 1-phosphate metabolism and analysis,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 606–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Weigert, N. Weis, and B. Brüne, “Regulation of macrophage function by sphingosine-1-phosphate,” Immunobiology, vol. 214, no. 9-10, pp. 748–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. S. I. Rosenfeld, C. H. Packman, and J. P. Leddy, “Inhibition of the lytic action of cell-bound terminal complement components by human high density lipoproteins and apoproteins,” The Journal of Clinical Investigation, vol. 71, no. 4, pp. 795–808, 1983. View at Scopus
  56. K. K. Hamilton, J. Zhao, and P. J. Sims, “Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9,” The Journal of Biological Chemistry, vol. 268, no. 5, pp. 3632–3638, 1993. View at Scopus
  57. A. L. Pasqui, L. Puccetti, G. Bova et al., “Relationship between serum complement and different lipid disorders,” Clinical and Experimental Medicine, vol. 2, no. 1, pp. 33–38, 2002. View at Scopus
  58. C. Garianda, E. Hirsch, S. Bozza et al., “Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response,” Nature, vol. 420, no. 6912, pp. 182–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. G. D. Norata, C. Garlanda, and A. L. Catapano, “The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases,” Trends in Cardiovascular Medicine, vol. 20, no. 2, pp. 35–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. G. D. Norata, P. Marchesi, V. K. Pulakazhi Venu et al., “Deficiency of the long pentraxin ptx3 promotes vascular inflammation and atherosclerosis,” Circulation, vol. 120, no. 8, pp. 699–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. G. D. Norata, P. Marchesi, A. Pirillo et al., “Long pentraxin 3, a key component of innate immunity, is modulated by high-density lipoproteins in endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 5, pp. 925–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Gupta and A. L. DeFranco, “Lipid rafts and B cell signaling,” Seminars in Cell and Developmental Biology, vol. 18, no. 5, pp. 616–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. L. Gruaz, C. Delucinge-Vivier, P. Descombes, J. M. Dayer, and D. Burger, “Blockade of T cell contact-activation of human monocytes by high-density lipoproteins reveals a new pattern of cytokine and inflammatory genes,” PLoS ONE, vol. 5, no. 2, Article ID e9418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. D. Norata and A. L. Catapano, “HDL and adaptive immunity: a tale of lipid rafts,” Atherosclerosis, vol. 225, no. 1, pp. 34–35, 2012.
  65. S. H. Wang, S. G. Yuan, D. Q. Peng, and S.-P. Zhao, “HDL and apoA-I inhibit antigen presentation-mediated T cell activation by disrupting lipid rafts in antigen presenting cells,” Atherosclerosis, vol. 225, no. 1, pp. 105–114, 2012. View at Publisher · View at Google Scholar
  66. G. Liu, K. Yang, S. Burns, S. Shrestha, and H. Chi, “The S1P 1-mTOR axis directs the reciprocal differentiation of T (H) 1 and T (reg) cells,” Nature Immunology, vol. 11, no. 11, pp. 1047–1056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. A. J. Wilhelm, M. Zabalawi, J. S. Owen et al., “Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr -/-, ApoA-I-/- mice,” The Journal of Biological Chemistry, vol. 285, no. 46, pp. 36158–36169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. E. F. Borba, J. F. Carvalho, and E. Bonfá, “Mechanisms of dyslipoproteinemias in systemic lupus erythematosus,” Clinical and Developmental Immunology, vol. 13, no. 2–4, pp. 203–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. W. Cruz, S. Fialho, E. Morato et al., “Is there a link between inflammation and abnormal lipoprotein profile in Sjögren's syndrome?” Joint Bone Spine, vol. 77, no. 3, pp. 229–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Mathieu, L. Gossec, M. Dougados, and M. Soubrier, “Cardiovascular profile in ankylosing spondylitis: a systematic review and meta-analysis,” Arthritis Care & Research, vol. 63, no. 4, pp. 557–563, 2011. View at Scopus
  71. S. I. Van Leuven, R. Hezemans, J. H. Levels et al., “Enhanced atherogenesis and altered high density lipoprotein in patients with Crohn's disease,” Journal of Lipid Research, vol. 48, no. 12, pp. 2640–2646, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. B. H. Hahn, J. Grossman, B. J. Ansell, B. J. Skaggs, and M. McMahon, “Altered lipoprotein metabolism in chronic inflammatory states: proinflammatory high-density lipoprotein and accelerated atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis,” Arthritis Research and Therapy, vol. 10, no. 4, article 213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. B. J. Ansell, “The two faces of the 'good' cholesterol,” Cleveland Clinic Journal of Medicine, vol. 74, no. 10, pp. 697–705, 2007. View at Scopus
  74. M. Navab, S. Y. Hama, G. M. Anantharamaiah et al., “Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3,” Journal of Lipid Research, vol. 41, no. 9, pp. 1495–1508, 2000. View at Scopus
  75. M. Navab, S. Y. Hama, G. P. Hough, G. Subbanagounder, S. T. Reddy, and A. M. Fogelman, “A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of inactivating oxidized phospholipids,” Journal of Lipid Research, vol. 42, no. 8, pp. 1308–1317, 2001. View at Scopus
  76. S. G. O'Neill, I. Giles, A. Lambrianides et al., “Antibodies to apolipoprotein A-I, high-density lipoprotein, and C-reactive protein are associated with disease activity in patients with systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 62, no. 3, pp. 845–854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. J. L. Peters, V. P. Van Halm, M. T. Nurmohamed et al., “Relations between autoantibodies against oxidized low-density lipoprotein, inflammation, subclinical atherosclerosis, and cardiovascular disease in rheumatoid arthritis,” The Journal of Rheumatology, vol. 35, no. 8, pp. 1495–1499, 2008. View at Scopus
  78. S. Kathiresan, O. Melander, C. Guiducci et al., “Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans,” Nature Genetics, vol. 40, no. 2, pp. 189–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Hiura, C. S. Shen, Y. Kokubo et al., “Identification of genetic markers associated with high-density lipoprotein-cholesterol by genome-wide screening in a Japanese population—the Suita study,” Circulation Journal, vol. 73, no. 6, pp. 1119–1126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. T. M. Teslovich, K. Musunuru, A. V. Smith, et al., “Biological, clinical and population releavance of 95 loci for blood lipids,” Nature, vol. 466, no. 7307, pp. 707–713, 2010. View at Publisher · View at Google Scholar
  81. W. Igl, A. Johansson, J. F. Wilson et al., “Modeling of environmental effects in genome-wide association studies identifies SLC2A2 and HP as novel loci influencing serum cholesterol levels,” PLoS Genetics, vol. 6, no. 1, Article ID e1000798, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. A. H. Berg and P. E. Scherer, “Adipose tissue, inflammation, and cardiovascular disease,” Circulation Research, vol. 96, no. 9, pp. 939–949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Takiguchi, C. Fukano, Y. Kimura, M. Tanaka, K. Tanida, and H. Kaji, “Variation in the 5′-flanking region of the neuropeptide Y2 receptor gene and metabolic parameters,” Metabolism, vol. 59, no. 11, pp. 1591–1596, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. L. E. Kuo, J. B. Kitlinska, J. U. Tilan et al., “Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome,” Nature Medicine, vol. 13, no. 7, pp. 803–811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. M. G. Wolfs, S. S. Rensen, E. J. Bruin-Van Dijk et al., “Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study,” BMC Medical Genomics, vol. 3, article 34, pp. 1–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Ammirati, D. Cianflone, M. Banfi et al., “Circulating CD4+CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 9, pp. 1832–1841, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. G. D. Norata, E. Callegari, M. Marchesi, G. Chiesa, P. Eriksson, and A. L. Catapano, “High-density lipoproteins induce transforming growth factor-β2 expression in endothelial cells,” Circulation, vol. 111, no. 21, pp. 2805–2811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Vergeer, S. M. Boekholdt, M. S. Sandhu et al., “Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility,” Circulation, vol. 122, no. 5, pp. 470–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Vergeer, S. J. A. Korporaal, R. Franssen et al., “Genetic variant of the scavenger receptor BI in humans,” The New England Journal of Medicine, vol. 364, no. 2, pp. 136–145, 2011. View at Scopus
  91. R. Frikke-Schmidt, B. G. Nordestgaard, M. C. A. Stene et al., “Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease,” Journal of the American Medical Association, vol. 299, no. 21, pp. 2524–2532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. S. M. Bared, C. Buechler, A. Boettcher et al., “Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells,” Molecular Biology of the Cell, vol. 15, no. 12, pp. 5399–5407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. G. G. Schwartz, A. G. Olsson, M. Abt, et al., “Effects of dalcetrapib in patients with a recent acute coronary syndrome,” The New England Journal of Medicine, vol. 367, no. 22, pp. 2089–2099, 2012. View at Publisher · View at Google Scholar