About this Journal Submit a Manuscript Table of Contents
Journal of Metallurgy
Volume 2012 (2012), Article ID 290873, 7 pages
http://dx.doi.org/10.1155/2012/290873
Research Article

Effect of Mechanical Milling and Cold Pressing on Co Powder

1Department of Engineering Metallurgy, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
2Council for Scientific and Industrial Research (CSIR), Materials Science and Manufacturing, Meiring Naude Road, Brummeria, P.O. Box 395, Pretoria 0001, South Africa
3DST/CSIR Nanotechnology Innovation Centre, National Centre for Nano-Structured Materials, Council for Scientific Industrial Research, P.O. Box 395, Pretoria 0001, South Africa

Received 29 August 2011; Revised 28 October 2011; Accepted 2 November 2011

Academic Editor: Qian Zhao

Copyright © 2012 A. S. Bolokang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. Pileni, “Mesoscopic domains of cobalt nanocrystals,” Pure and Applied Chemistry, vol. 74, no. 9, pp. 1707–1718, 2002. View at Scopus
  2. Z. Fang, P. Maheshwari, X. Wang, H. Y. Sohn, A. Griffo, and R. Riley, “An experimental study of the sintering of nanocrystalline WC-Co powders,” International Journal of Refractory Metals and Hard Materials, vol. 23, no. 4–6, pp. 249–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Q. Ou, M. Song, T. T. Shen, D. H. Xiao, and Y. H. He, “Fabrication and mechanical properties of ultrafine grained WC-10Co-0.45Cr3C2-0.25VC alloys,” International Journal of Refractory Metals and Hard Materials, vol. 29, no. 2, pp. 260–267, 2011. View at Publisher · View at Google Scholar
  4. M. H. Enayati, G. R. Aryanpour, and A. Ebnonnasir, “Production of nanostructured WC-Co powder by ball milling,” International Journal of Refractory Metals and Hard Materials, vol. 27, no. 1, pp. 159–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Matsumoto, “Variation in transformation hysteresis in pure cobalt with transformation cycles,” Journal of Alloys and Compounds, vol. 223, no. 1, pp. L1–L3, 1995. View at Scopus
  6. J. Y. Huang, Y. K. Wu, H. Q. Ye, and K. Lu, “Allotropic transformation of cobalt induced by ball milling,” Nanostructured Materials, vol. 6, no. 5–8, pp. 723–726, 1995. View at Scopus
  7. J. Sort, J. Nogués, S. Suriñach, J. S. Muñoz, and M. D. Baró, “Microstructural aspects of the hcp-fcc allotropic phase transformation induced in cobalt by ball milling,” Philosophical Magazine, vol. 83, no. 4, pp. 439–455, 2003. View at Publisher · View at Google Scholar
  8. J. Sort, J. Nogués, S. Surinach, J. S. Muñoz, and M. D. Baró, “Correlation between stacking fault formation, allotropic phase transformations and magnetic properties of ball-milled cobalt,” Materials Science and Engineering A, vol. 375–377, no. 1-2, pp. 869–873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Delogu, “Kinetics of allotropic phase transformation in cobalt powders undergoing mechanical processing,” Scripta Materialia, vol. 58, no. 2, pp. 126–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kirin, A. Bonefačić, and D. Dužević, “Phase transformation in pressed cobalt powder,” Journal of Physics F, vol. 14, no. 11, pp. 2781–2786, 1984. View at Publisher · View at Google Scholar
  11. E. A. Owen and D. Madoc Jones, “Effect of grain size on the crystal structure of cobalt,” Proceedings of the Physical Society B, vol. 67, no. 6, article 302, pp. 456–466, 1954. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Bolokang, M. J. Phasha, C. Oliphant, and D. Motaung, “XRD analysis and microstructure of milled and sintered V, W, C, and Co powders,” International Journal of Refractory Metals and Hard Materials, vol. 29, no. 1, pp. 108–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. S. Grabchikov and A. M. Yaskovich, “Effect of the structure of amorphous electrodeposited Ni-W and Ni-Co-W alloys on their crystallization,” Russian Metallurgy, vol. 2006, no. 1, pp. 56–60, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Sheikholeslam, M. H. Enayati, and K. Raeissi, “Characterization of nanocrystalline and amorphous cobalt-phosphorous electrodeposits,” Materials Letters, vol. 62, no. 21-22, pp. 3629–3631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Bolarín-Miró, F. S.-D. Jesús, G. Torres-Villaseñor, C. A. Cortés-Escobedo, J. A. Betancourt-Cantera, and J. I. Betancourt-Reyes, “Amorphization of Co-base alloy by mechanical alloying,” Journal of Non-Crystalline Solids, vol. 357, no. 7, pp. 1705–1709, 2011. View at Publisher · View at Google Scholar
  16. S. Louidi, F. Z. Bentayeb, W. Tebib, J. J. Suñol, A. M. Mercier, and J. M. Grenèche, “Amorphisation of Cr-10Co mixture by mechanical alloying,” Journal of Non-Crystalline Solids, vol. 356, no. 20–22, pp. 1052–1056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. F. Zhou and H. Bakker, “Atomically disordered nanocrystalline Co2Si by high-energy ball milling,” Journal of Physics: Condensed Matter, vol. 6, no. 22, article 004, pp. 4043–4052, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Limoge and A. Barbu, “Amorphization mechanism in metallic crystalline solids under irradiation,” Physical Review B, vol. 30, no. 4, pp. 2212–2215, 1984. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Holz, P. Ziemann, and W. Buckel, “Direct evidence for amorphization of pure gallium by low-temperature ion irradiation,” Physical Review Letters, vol. 51, no. 17, pp. 1584–1587, 1983. View at Publisher · View at Google Scholar · View at Scopus
  20. M. A. Xueming and J. I. Gang, “Nanostructured WC-Co alloy prepared by mechanical alloying,” Journal of Alloys and Compounds, vol. 245, no. 1-2, pp. L30–L32, 1996. View at Scopus
  21. S. Takeda and J. Yamasaki, “Amorphization in silicon by electron irradiation,” Physical Review Letters, vol. 83, no. 2, pp. 320–323, 1999. View at Scopus
  22. G. Patriarche, E. Le Bourhis, M. M. O. Khayyat, and M. M. Chaudhri, “Indentation-induced crystallization and phase transformation of amorphous germanium,” Journal of Applied Physics, vol. 96, no. 3, pp. 1464–1468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. J. Fan, F. Q. Guo, Z. Q. Hu, M. X. Quan, and K. Lu, “Amorphization of selenium induced by high-energy ball milling,” Physical Review B, vol. 55, no. 17, pp. 11010–11013, 1997. View at Scopus
  24. Y. Wang, Y. Z. Fang, T. Kikegawa et al., “Amorphouslike diffraction pattern in solid metallic titanium,” Physical Review Letters, vol. 95, no. 15, Article ID 155501, 2005. View at Publisher · View at Google Scholar
  25. Y. Koltypin, G. Katabi, X. Cao, R. Prozorov, and A. Gedanken, “Sonochemical preparation of amorphous nickel,” Journal of Non-Crystalline Solids, vol. 201, no. 1-2, pp. 159–162, 1996. View at Scopus
  26. C. Xie, J. Hu, R. Wu, and H. Xia, “Structure transition comparison between the amorphous nanosize particles and coarse-grained polycrystalline of cobalt,” Nanostructured Materials, vol. 11, no. 8, pp. 1061–1066, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Song, L. L. Henrys, and W. Yang, “Stable amorphous cobalt nanoparticles formed by an in situ rapidly cooling microfluidic process,” Langmuir, vol. 25, no. 17, pp. 10209–10217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, “Preparation of "amorphous" Ni60Nb40 by mechanical alloying,” Applied Physics Letters, vol. 43, no. 11, pp. 1017–1019, 1983. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Schultz, “Formation of amorphous metals by mechanical alloying,” Materials Science and Engineering, vol. 97, pp. 15–23, 1988.
  30. J. Eckert, L. Schultz, and K. Urban, “Comparison of solid-state amorphization by mechanical alloying and interdiffusion in NiZr,” Materials Science and Engineering A, vol. 134, pp. 1389–1393, 1991. View at Scopus
  31. I. Börner and J. Eckert, “Phase formation and properties of mechanically alloyed amorphous Al85Y8Ni5Co2,” Scripta Materialia, vol. 45, no. 2, pp. 237–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. J. T. Hsieh, C. K. Lin, J. S. Chen, R. R. Jeng, Y. L. Lin, and P. Y. Lee, “Preparation and thermal stability of mechanically alloyed amorphous Ni-Zr-Ti-Si composites,” Materials Science and Engineering A, vol. 375–377, no. 1-2, pp. 820–824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Bansal, B. Fultz, and W. L. Johnson, “Crystallization of FeBSi metallic glass during ball milling,” Nanostructured Materials, vol. 4, no. 8, pp. 919–925, 1994. View at Scopus
  34. M. L. Trudeau, “Deformation induced crystallization due to instability in amorphous FeZr alloys,” Applied Physics Letters, vol. 64, no. 26, pp. 3661–3663, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Huang, R. J. Perez, P. J. Crawford, A. A. Sharif, S. R. Nutt, and E. J. Lavernia, “Mechanically induced crystallization of metglas Fe78B13Si9 during cryogenic high energy ball milling,” Nanostructured Materials, vol. 5, no. 5, pp. 545–553, 1995. View at Scopus
  36. J. Xu and M. Atzmon, “Temperature dependence of deformation-assisted crystallization in amorphous Fe78B13Si9,” Applied Physics Letters, vol. 73, no. 13, pp. 1805–1807, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. S. Kwon, J. S. Kim, I. V. Povstugar, E. P. Yelsukov, and P. P. Choi, “Role of local heating in crystallization of amorphous alloys under ball milling: an experiment on Fe90Zr10,” Physical Review B, vol. 75, no. 14, Article ID 144112, 2007. View at Publisher · View at Google Scholar
  38. J. J. Suñol, A. González, and J. Saurina, “Thermal analysis of two Fe-X-B (X=Nb, ZrNi) alloys prepared by mechanical alloying,” Journal of Thermal Analysis and Calorimetry, vol. 72, no. 1, pp. 329–335, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. X. J. Gu, F. Ye, F. Zhou, and K. Lu, “Pressure effect on crystallization of mechanically alloyed amorphous Al85Fe15 alloy,” Materials Science and Engineering A, vol. 278, no. 1-2, pp. 61–65, 2000.
  40. F. Ye and K. Lu, “Pressure effect on crystallization kinetics of an Al-La-Ni amorphous alloy,” Acta Materialia, vol. 47, no. 8, pp. 2449–2454, 1999. View at Publisher · View at Google Scholar
  41. C. Mangler, C. Gammer, H. P. Karnthaler, and C. Rentenberger, “Structural modifications during heating of bulk nanocrystalline FeAl produced by high-pressure torsion,” Acta Materialia, vol. 58, no. 17, pp. 5631–5638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Papandrea and L. Battezzati, “A study of the α↔γ transformation in pure iron: rate variations revealed by means of thermal analysis,” Philosophical Magazine, vol. 87, no. 10, pp. 1601–1618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. K. Rai, S. Raju, B. Jeyaganesh, E. Mohandas, R. Sudha, and V. Ganesan, “Effect of heating and cooling rate on the kinetics of allotropic phase changes in uranium: a differential scanning calorimetry study,” Journal of Nuclear Materials, vol. 383, no. 3, pp. 215–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. J. Sunol, A. González, T. Pradell, P. Bruna, M. T. Clavaguera-Mora, and N. Clavaguera, “Thermal and structural changes induced by mechanical alloying in melt-spun Fe-Ni based amorphous alloys,” Materials Science and Engineering A, vol. 375–377, no. 1-2, pp. 881–887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. T. Clavaguera-Mora, J. J. Suñol, and N. Clavaguera, “Relaxation Kinetics of Mechanically Alloyed Powders. Fe-Ni-Si-P: A Case Study,” Journal of Metastable and Nanocrystalline Materials, vol. 10, pp. 459–466, 2001. View at Publisher · View at Google Scholar
  46. V. V. Boldyrev and K. Tkáčová, “Mechanochemistry of solids: past, present, and prospects,” Journal of Materials Synthesis and Processing, vol. 8, no. 3-4, pp. 121–132, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Kajiwara, S. Ohno, K. Honma, and M. Uda, “New crystal structure of pure cobalt formed in ultrafine particles,” Philosophical Magazine Letters, vol. 55, no. 5, pp. 215–219, 1987. View at Scopus
  48. S. D. De la Torre, K. N. Ishihara, and P. H. Shingu, “Synthesis of SnTe by repeated cold-pressing,” Materials Science and Engineering A, vol. 266, no. 1-2, pp. 37–43, 1999. View at Scopus
  49. Y. Birol, “Crystallization of a Fe36Ni36B28 metallic glass during ball-milling,” Scripta Materialia, vol. 34, no. 7, pp. 1081–1085, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Bednarčík, J. Kováč, P. Kollár et al., “Crystallization of CoFeSiB metallic glass induced by long-time ball milling,” Journal of Non-Crystalline Solids, vol. 337, no. 1, pp. 42–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Pȩkała, M. Jachimowicz, V. I. Fadeeva, and H. Matyja, “Phase transformations in Co-B-Si alloys induced by high-energy ball milling,” Journal of Non-Crystalline Solids, vol. 287, no. 1–3, pp. 360–365, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. A. S. Bolokang and M. J. Phasha, “Thermal analysis on the curie temperature of nanocrystalline Ni produced by ball milling,” Advanced Powder Technology, vol. 22, no. 4, pp. 518–521, 2011. View at Publisher · View at Google Scholar
  53. W. Szkliniarz and G. Smolka, “Analysis of volume effects of phase transformation in titanium alloys,” Journal of Materials Processing Technology, vol. 53, no. 1-2, pp. 413–422, 1995. View at Publisher · View at Google Scholar