About this Journal Submit a Manuscript Table of Contents
Journal of Marine Biology
Volume 2011 (2011), Article ID 518516, 12 pages
http://dx.doi.org/10.1155/2011/518516
Research Article

Not All Larvae Stay Close to Home: Insights into Marine Population Connectivity with a Focus on the Brown Surgeonfish (Acanthurus nigrofuscus)

1Hawaii Institute of Marine Biology, University of Hawaii at Manoa, P.O. Box 1346, Kaneohe, HI 96744, USA
2Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
3Department of Marine Sciences, University of Puerto Rico Mayagüez, P.O. Box 9000, Mayagüez, PR 00681, USA

Received 16 June 2010; Revised 18 August 2010; Accepted 19 September 2010

Academic Editor: Kim Selkoe

Copyright © 2011 Jeff A. Eble et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. K. Dayton, S. F. Thrush, M. T. Agardy, and R. J. Hofman, “Environmental effects of marine fishing,” Aquatic Conservation: Marine and Freshwater Ecosystems, vol. 5, no. 3, pp. 205–232, 1995. View at Scopus
  2. J. B. C. Jackson, M. X. Kirby, W. H. Berger et al., “Historical overfishing and the recent collapse of coastal ecosystems,” Science, vol. 293, no. 5530, pp. 629–637, 2001. View at Scopus
  3. J. M. Pandolfi, R. H. Bradbury, E. Sala et al., “Global trajectories of the long-term decline of coral reef ecosystems,” Science, vol. 301, no. 5635, pp. 955–958, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. B. S. Halpern and R. R. Warner, “Marine reserves have rapid and lasting effects,” Ecology Letters, vol. 5, no. 3, pp. 361–366, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Pauly, V. Christensen, S. Guénette et al., “Towards sustainability in world fisheries,” Nature, vol. 418, no. 6898, pp. 689–695, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. F. R. Gell and C. M. Roberts, “Benefits beyond boundaries: the fishery effects of marine reserves,” Trends in Ecology and Evolution, vol. 18, no. 9, pp. 448–455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Lubchenco, S. R. Palumbi, S. D. Gaines, and S. Andelman, “Plugging a hole in the ocean: the emerging science of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S3–S7, 2003. View at Scopus
  8. F. Guichard, S. A. Levin, A. Hastings, and D. Siegel, “Toward a dynamic metacommunity approach to marine reserve theory,” BioScience, vol. 54, no. 11, pp. 1003–1011, 2004. View at Scopus
  9. T. P. Hughes, D. R. Bellwood, C. Folke, R. S. Steneck, and J. Wilson, “New paradigms for supporting the resilience of marine ecosystems,” Trends in Ecology and Evolution, vol. 20, no. 7, pp. 380–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Dugan and G. E. Davis, “Applications of marine refugia to coastal fisheries management,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 50, no. 9, pp. 2029–2042, 1993. View at Scopus
  11. P. F. Sale, R. K. Cowen, B. S. Danilowicz et al., “Critical science gaps impede use of no-take fishery reserves,” Trends in Ecology and Evolution, vol. 20, no. 2, pp. 74–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. L. W. Botsford, J. W. White, M.-A. Coffroth et al., “Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs,” Coral Reefs, vol. 28, no. 2, pp. 327–337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. G. P. Jones, M. J. Millcich, M. J. Emsile, and C. Lunow, “Self-recruitment in a coral fish population,” Nature, vol. 402, no. 6763, pp. 802–804, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Planes, G. P. Jones, and S. R. Thorrold, “Larval dispersal connects fish populations in a network of marine protected areas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5693–5697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Crisp, “Overview of research on marine invertebrate larvae,” in Marine Biodeterioration: An Interdisciplinary Study, J. D. Costlow and R. C. Tipper, Eds., pp. 103–126, Naval Institute Press, Annapolis, Md, USA, 1984.
  16. R. R. Strathmann, “Hypotheses on the origins of marine larvae,” Annual Review of Ecology and Systematics, vol. 24, pp. 89–117, 1993. View at Scopus
  17. A. L. Shanks, B. A. Grantham, and M. H. Carr, “Propagule dispersal distance and the size and spacing of marine reserves,” Ecological Applications, vol. 13, no. 1, pp. S159–S169, 2003. View at Scopus
  18. A. L. Shanks, “Pelagic larval duration and dispersal distance revisited,” The Biological Bulletin, vol. 216, no. 3, pp. 373–385, 2009. View at Scopus
  19. D. A. Siegel, B. P. Kinlan, B. Gaylord, and S. D. Gaines, “Lagrangian descriptions of marine larval dispersion,” Marine Ecology Progress Series, vol. 260, pp. 83–96, 2003. View at Scopus
  20. S. E. Lester and B. I. Ruttenberg, “The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis,” Proceedings of the Royal Society B, vol. 272, no. 1563, pp. 585–591, 2005. View at Publisher · View at Google Scholar
  21. K. Weersing and R. J. Toonen, “Population genetics, larval dispersal, and connectivity in marine systems,” Marine Ecology Progress Series, vol. 393, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Leis and M. I. McCormick, “The biology, behavior and ecology of the pelagic larval stage of coral reef fishes,” in Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem, P. F. Sale, Ed., pp. 171–199, Academic Press, San Diego, Calif, USA, 2002.
  23. J. N. Underwood, L. D. Smith, M. J. H. van Oppen, and J. P. Gilmour, “Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience,” Ecological Applications, vol. 19, no. 1, pp. 18–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. W. Bowen, A. L. Bass, A. Muss, J. Carlin, and D. R. Robertson, “Phylogeography of two Atlantic squirrelfishes (family Holocentridae): exploring links between pelagic larval duration and population connectivity,” Marine Biology, vol. 149, no. 4, pp. 899–913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. G. Jones, G. I. Moore, C. Kvarnemo, D. Walker, and J. C. Avise, “Sympatric speciation as a consequence of male pregnancy in seahorses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 11, pp. 6598–6603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Rocha, D. R. Robertson, J. Roman, and B. W. Bowen, “Ecological speciation in tropical reef fishes,” Proceedings of the Royal Society B, vol. 272, no. 1563, pp. 573–579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Choat, “Phylogeography and reef fishes: bringing ecology back into the argument,” Journal of Biogeography, vol. 33, no. 6, pp. 967–968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. Rocha and B. W. Bowen, “Speciation in coral-reef fishes,” Journal of Fish Biology, vol. 72, no. 5, pp. 1101–1121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. D. Crow, H. Munehara, and G. Bernardi, “Sympatric speciation in a genus of marine reef fishes,” Molecular Ecology, vol. 19, no. 10, pp. 2089–2105, 2010. View at Publisher · View at Google Scholar
  30. C. A. Farnsworth, D. R. Bellwood, and L. van Herwerden, “Genetic structure across the GBR: evidence from short-lived gobies,” Marine Biology, vol. 157, no. 5, pp. 945–953, 2010. View at Publisher · View at Google Scholar
  31. L. A. Rocha, A. L. Bass, D. R. Robertson, and B. W. Bowen, “Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae),” Molecular Ecology, vol. 11, no. 2, pp. 243–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. R. Bellwood and R. Fisher, “Relative swimming speeds in reef fish larvae,” Marine Ecology Progress Series, vol. 211, pp. 299–303, 2001. View at Scopus
  33. G. Gerlach, J. Atema, M. J. Kingsford, K. P. Black, and V. Miller-Sims, “Smelling home can prevent dispersal of reef fish larvae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 858–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. K. Cowen and S. Sponaugle, “Larval dispersal and marine population connectivity,” Annual Review of Marine Science, vol. 1, pp. 443–466, 2009.
  35. S. E. Swearer, J. E. Caselle, D. W. Lea, and R. R. Warner, “Larval retention and recruitment in an island population of a coral-reef fish,” Nature, vol. 402, no. 6763, pp. 799–802, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. G. P. Jones, S. Planes, and S. R. Thorrold, “Coral reef fish larvae settle close to home,” Current Biology, vol. 15, no. 14, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. G. R. Almany, M. L. Berumen, S. R. Thorrold, S. Planes, and G. P. Jones, “Local replenishment of coral reef fish populations in a marine reserve,” Science, vol. 316, no. 5825, pp. 742–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H. M. Patterson and S. E. Swearer, “Long-distance dispersal and local retention of larvae as mechanisms of recruitment in an island population of a coral reef fish,” Austral Ecology, vol. 32, no. 2, pp. 122–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Carreras-Carbonell, E. Macpherson, and M. Pascual, “High self-recruitment levels in a Mediterranean littoral fish population revealed by microsatellite markers,” Marine Biology, vol. 151, no. 2, pp. 719–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. P. J. Doherty and D. M. Williams, “The replenishment of coral reef populations,” Oceanography and Marine Biology, vol. 26, pp. 487–551, 1988.
  41. P. F. Sale, “Reef fish communities: open nonequilibrium systems,” in The Ecology of Fishes on Coral Reefs, P. F. Sale, Ed., pp. 564–598, Academic Press, San Diego, Calif, USA, 1991.
  42. M. J. Caley, M. H. Carr, M. A. Hixon, T. P. Hughes, G. P. Jones, and B. A. Menge, “Recruitment and the local dynamics of open marine populations,” Annual Review of Ecology and Systematics, vol. 27, pp. 477–500, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Doherty and T. Fowler, “An empirical test of recruitment limitation in a coral reef fish,” Science, vol. 263, no. 5149, pp. 935–939, 1994. View at Scopus
  44. G. P. Jones, G. R. Almany, G. R. Russ et al., “Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges,” Coral Reefs, vol. 28, no. 2, pp. 307–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Jablonski and R. A. Lutz, “Larval ecology of marine benthic invertebrates: paleobiological implications,” Biological Reviews, vol. 58, no. 1, pp. 21–89, 1983.
  46. J. H. Brown, G. C. Stevens, and D. M. Kaufman, “The geographic range: size, shape, boundaries, and internal structure,” Annual Review of Ecology and Systematics, vol. 27, pp. 597–623, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Mora and D. R. Robertson, “Causes of latitudinal gradients in species richness: a test with fishes of the tropical eastern pacific,” Ecology, vol. 86, no. 7, pp. 1771–1782, 2005. View at Scopus
  48. G. Paulay and C. Meyer, “Dispersal and divergence across the greatest ocean region: do larvae matter?” Integrative and Comparative Biology, vol. 46, no. 3, pp. 269–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. G. M. Wellington and B. C. Victor, “Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae),” Marine Biology, vol. 101, no. 4, pp. 557–567, 1989. View at Publisher · View at Google Scholar · View at Scopus
  50. S. E. Lester, B. I. Ruttenberg, S. D. Gaines, and B. P. Kinlan, “The relationship between dispersal ability and geographic range size,” Ecology Letters, vol. 10, no. 8, pp. 745–758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. B. P. Kinlan and S. D. Gaines, “Propagule dispersal in marine and terrestrial environments: a community perspective,” Ecology, vol. 84, no. 8, pp. 2007–2020, 2003. View at Scopus
  52. I. R. Bradbury and P. Bentzen, “Non-linear genetic isolation by distance: implications for dispersal estimation in anadromous and marine fish populations,” Marine Ecology Progress Series, vol. 340, pp. 245–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Jablonski, “Larval ecology and macroevolution in marine invertebrates,” Bulletin of Marine Science, vol. 39, no. 2, pp. 565–587, 1986. View at Scopus
  54. R. B. Emlet, “Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea),” Evolution, vol. 49, no. 3, pp. 476–489, 1995. View at Scopus
  55. M. A. J. Rivera, C. D. Kelley, and G. K. Roderick, “Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses,” Biological Journal of the Linnean Society, vol. 81, no. 3, pp. 449–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. T. Craig, J. A. Eble, B. W. Bowen, and D. R. Robertson, “High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae),” Marine Ecology Progress Series, vol. 334, pp. 245–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. L. Ramon, P. A. Nelson, E. De Martini, W. J. Walsh, and G. Bernardi, “Phylogeography, historical demography, and the role of post-settlement ecology in two Hawaiian damselfish species,” Marine Biology, vol. 153, no. 6, pp. 1207–1217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. A. Eble, R. J. Toonen, and B. W. Bowen, “Endemism and dispersal: comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago,” Marine Biology, vol. 156, no. 4, pp. 689–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. M. T. Craig, J. A. Eble, and B. W Bowen, “Origins, ages, and population histories: comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon),” Journal of Biogeography, vol. 37, pp. 2125–2136, 2010. View at Publisher · View at Google Scholar
  60. L. Fishelson, A. H. Montgomery, and A. H. Myrberg Jr., “Biology of the surgeonfish Acanthurus nigrofuscus with emphasis on change over in diet and gonadal cycles,” Marine Ecology Progress Series, vol. 39, pp. 37–47, 1987.
  61. M. L. Domeier and P. L. Colin, “Tropical reef fish spawning aggregations: defined and reviewed,” Bulletin of Marine Science, vol. 60, no. 3, pp. 698–726, 1997. View at Scopus
  62. J. E. Randall, Reef and Shore Fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands, University of Hawaii Press, Honolulu, Hawaii, USA, 2005.
  63. J. C. Briggs, Marine Zoogeography, McGraw–Hill, New York, NY, USA, 1974.
  64. J. E. Randall, Reef and Shore Fishes of the Hawaiian Islands, University of Hawaii Sea Grant Program, Honolulu, Hawaii, USA, 2007.
  65. H. A. Lessios, “The great American schism: divergence of marine organisms after the rise of the Central american Isthmus,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 63–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. T. S. Daly-Engel, R. D. Grubbs, K. A. Feldheim, B. W. Bowen, and R. J. Toonen, “Is multiple mating beneficial or unavoidable? Low multiple paternity and genetic diversity in the shortspine spurdog Squalus mitsukurii,” Marine Ecology Progress Series, vol. 403, pp. 255–267, 2010. View at Publisher · View at Google Scholar
  67. A. J. Bohonak, “Dispersal, gene flow, and population structure,” Quarterly Review of Biology, vol. 74, no. 1, pp. 21–45, 1999. View at Scopus
  68. M. R. Gaither, R. J. Toonen, D. R. Robertson, S. Planes, and B. W. Bowen, “Genetic evaluation of marine biogeographic barriers: perspectives from two widespread Indo-Pacific snappers (Lutjanus spp.),” Journal of Biogeography, vol. 37, no. 1, pp. 133–147, 2010.
  69. R. J. Toonen, K. R. Andrews, and I. B. Baums, “Defining boundaries for Ecosystem-based management: a multispecies case study of marine connectivity across the Hawaiian Archipelago,” Journal of Marine Biology. In press.
  70. J. C. Avise, Molecular Markers, Natural History, and eEvolution, Sinauer Associates, Sunderland, Mass, USA, 2004.
  71. M. E. Hellberg, R. S. Burton, J. E. Neigel, and S. R. Palumbi, “Genetic assessment of connectivity among marine populations,” Bulletin of Marine Science, vol. 70, no. 1, pp. 273–290, 2002. View at Scopus
  72. W. H. Lowe and F. W. Allendorf, “What can genetics tell us about population connectivity?” Molecular Ecology, vol. 19, no. 15, pp. 3038–3051, 2010. View at Publisher · View at Google Scholar
  73. F. Rousset, “Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance,” Genetics, vol. 145, no. 4, pp. 1219–1228, 1997. View at Scopus
  74. R. S. Waples, “Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species,” Journal of Heredity, vol. 89, no. 5, pp. 438–450, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. R. S. Waples and O. Gaggiotti, “What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity,” Molecular Ecology, vol. 15, no. 6, pp. 1419–1439, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Luikart, P. R. England, D. Tallmon, S. Jordan, and P. Taberlet, “The power and promise of population genomics: from genotyping to genome typing,” Nature Reviews Genetics, vol. 4, no. 12, pp. 981–994, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Sunnucks and D. F. Hales, “Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae),” Molecular Biology and Evolution, vol. 13, no. 3, pp. 510–524, 1996. View at Scopus
  78. C. B. Song, T. J. Near, and L. M. Page, “Phylogenetic Relations among Percid Fishes as Inferred from Mitochondrial Cytochrome b DNA Sequence Data,” Molecular Phylogenetics and Evolution, vol. 10, no. 3, pp. 343–353, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Taberlet, A. Meyer, and J. Bouvert, “Unusually large mitochondrial variation in populations of the blue tit, Parus caeruleus,” Molecular Ecology, vol. 1, pp. 27–36, 1992.
  80. K. Katoh, K. Misawa, K.-I. Kuma, and T. Miyata, “MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform,” Nucleic Acids Research, vol. 30, no. 14, pp. 3059–3066, 2002. View at Scopus
  81. L. Excoffier, L. G. Laval, and S. Schneider, “Arlequin ver 3.0: an integrated software package for population genetics data analysis,” Evolutionary Biology Online, vol. 1, pp. 47–50, 2005.
  82. M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, NY, USA, 1987.
  83. M. Clement, D. Posada, and K. A. Crandall, “TCS: a computer program to estimate gene genealogies,” Molecular Ecology, vol. 9, no. 10, pp. 1657–1659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. I. Dupanloup, S. Schneider, and L. Excoffier, “A simulated annealing approach to define the genetic structure of populations,” Molecular Ecology, vol. 11, no. 12, pp. 2571–2581, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993. View at Scopus
  86. H. Akaike, “A new look at statistical model identification,” IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974. View at Scopus
  87. D. Posada and K. A. Crandall, “MODELTEST: testing the model of DNA substitution,” Bioinformatics, vol. 14, no. 9, pp. 817–818, 1998. View at Scopus
  88. L. Jost, “GST and its relatives do not measure differentiation,” Molecular Ecology, vol. 17, no. 18, pp. 4015–4026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Wright, “Isolation by distance,” Genetics, vol. 28, pp. 114–138, 1943.
  90. M. Slatkin, “Isolation by distance in equilibrium and nonequilibrium populations,” Evolution, vol. 47, pp. 264–279, 1993.
  91. Y.-X. Fu, “Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection,” Genetics, vol. 147, no. 2, pp. 915–925, 1997. View at Scopus
  92. A. M. Hart and G. R. Russ, “Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus,” Marine Ecology Progress Series, vol. 136, no. 1-3, pp. 25–35, 1996. View at Scopus
  93. H. A. Lessios, “The great American schism: divergence of marine organisms after the rise of the Central american Isthmus,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 63–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. W. S. Grant and B. W. Bowen, “Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation,” Journal of Heredity, vol. 89, no. 5, pp. 415–426, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. D. I. Benn and D. J. A. Evans, Glaciers and Glaciation, Oxford University Press, New York, NY, USA, 1997.
  96. K. M. Ibrahim, R. A. Nichols, and G. M. Hewitt, “Spatial patterns of genetic variation generated by different forms of dispersal during range expansion,” Heredity, vol. 77, no. 3, pp. 282–291, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. I. R. Bradbury and P. Bentzen, “Non-linear genetic isolation by distance: implications for dispersal estimation in anadromous and marine fish populations,” Marine Ecology Progress Series, vol. 340, pp. 245–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. D. W. Hutchison and A. R. Templeton, “Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability,” Evolution, vol. 53, no. 6, pp. 1898–1914, 1999. View at Scopus
  99. R. Cudney-Bueno, M. F. Lavín, S. G. Marinone, P. T. Raimondi, and W. W. Shaw, “Rapid effects of marine reserves via larval dispersal,” PLoS ONE, vol. 4, no. 1, Article ID e4140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. C. White, K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacherl, and R. J. Toonen, “Ocean currents help explain population genetic structure,” Proceedings of the Royal Society B, vol. 277, no. 1688, pp. 1685–1694, 2010. View at Publisher · View at Google Scholar
  101. F. Bonjean and G. S. E. Lagerloef, “Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean,” Journal of Physical Oceanography, vol. 32, no. 10, pp. 2938–2954, 2002. View at Scopus
  102. B. W. Bowen, A. L. Bass, L. A. Rocha, W. S. Grant, and D. R. Robertson, “Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale,” Evolution, vol. 55, no. 5, pp. 1029–1039, 2001. View at Scopus
  103. S. Planes and C. Fauvelot, “Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean,” Evolution, vol. 56, no. 2, pp. 378–399, 2002. View at Scopus
  104. J. B. Horne, L. van Herwerden, J. H. Choat, and D. R. Robertson, “High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners,” Molecular Phylogenetics and Evolution, vol. 49, no. 2, pp. 629–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. J. S. Reece, B. W. Bowen, K. Joshi, V. Goz, and A. Larson, “Phylogeography of two moray eels indicates high dispersal throughout the INDO-PACIFIC,” Journal of Heredity, vol. 101, no. 4, pp. 391–402, 2010. View at Publisher · View at Google Scholar
  106. J. K. Schultz, R. L. Pyle, E. DeMartini, and B. W. Bowen, “Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus,” Marine Biology, vol. 151, no. 1, pp. 167–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. B. W. Bowen, A. Muss, L. A. Rocha, and W. S. Grant, “Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean,” Journal of Heredity, vol. 97, no. 1, pp. 1–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. O. S. Klanten, J. H. Choat, and L. Van Herwerden, “Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish,” Marine Biology, vol. 150, no. 4, pp. 659–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. J. D. DiBattista, C. Wilcox, M. T. Craig, L. A. Rocha, and B. W. Bowen, “Phylogeographic survey of the Bluelined surgeonfish, Acanthurus nigroris, reveals high connectivity and a cryptic endemic species in the Hawaiian Archipelago,” Journal of Marine Biology. In press. View at Publisher · View at Google Scholar
  110. J. C. Briggs, Global Biogeography, Elsevier, Amsterdam, The Netherlands, 1995.
  111. J. E. N. Vernon, Coral in Space and Time, Cornell University Press, Ithaca, NY, USA, 1995.
  112. J. E. Randall, “Zoogeography of shore fishes of the Indo-Pacific region,” Zoological Studies, vol. 37, no. 4, pp. 227–268, 1998. View at Scopus
  113. J. A. Hobbs, A. J. Frisch, G. R. Allen, and L. Van Herwerden, “Marine hybrid hotspot at Indo-Pacific biogeographic border,” Biology Letters, vol. 5, no. 2, pp. 258–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. L. van Herwerden, J. H, Choat, S. J. Newman, M. Leray, and G. Hillersøy, “Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management,” Marine Biology, vol. 156, no. 8, pp. 1595–1607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Drew, G. R. Allen, L. Kaufman, and P. H. Barber, “Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes,” Conservation Biology, vol. 22, no. 4, pp. 965–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Timm, M. Figiel, and M. Kochzius, “Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity,” Molecular Phylogenetics and Evolution, vol. 49, no. 1, pp. 268–276, 2008. View at Publisher · View at Google Scholar
  117. J. Timm and M. Kochzius, “Geological history and oceanography of the Indo-Malay Archipelago shape the genetic population structure in the false clown anemonefish (Amphiprion ocellaris),” Molecular Ecology, vol. 17, no. 18, pp. 3999–4014, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. A. Drew, G. R. Allen, and M. V. Erdmann, “Congruence between mitochondrial genes and color morphs in a coral reef fish: population variability in the Indo-Pacific damselfish Chrysiptera rex (Snyder, 1909),” Coral Reefs, vol. 29, no. 2, pp. 439–444, 2010. View at Publisher · View at Google Scholar
  119. J. Drew and P. H. Barber, “Sequential cladogenesis of the reef fish Pomacentrus moluccensis (Pomacentridae) supports the peripheral origin of marine biodiversity in the Indo-Australian archipelago,” Molecular Phylogenetics and Evolution, vol. 53, no. 1, pp. 335–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. J. K. Schultz, K. A. Feldheim, S. H. Gruber, M. V. Ashley, T. M. McGovern, and B. W. Bowen, “Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion),” Molecular Ecology, vol. 17, no. 24, pp. 5336–5348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Ekman, Zoogeography of the Sea, Sidwick & Jackson, London, UK, 1953.
  122. H. A. Lessios and D. R. Robertson, “Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier,” Proceedings of the Royal Society B, vol. 273, no. 1598, pp. 2201–2208, 2006. View at Publisher · View at Google Scholar
  123. E. Bazin, S. Glémin, and N. Galtier, “Population size does not influence mitochondrial genetic diversity in animals,” Science, vol. 312, no. 5773, pp. 570–572, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. F. Prugnolle and T. de Meeus, “Inferring sex-biased dispersal from population genetic tools: a review,” Heredity, vol. 88, no. 3, pp. 161–165, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. B. W. Bowen, A. L. Bass, L. Soares, and R. J. Toonen, “Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta),” Molecular Ecology, vol. 14, no. 8, pp. 2389–2402, 2005. View at Publisher · View at Google Scholar · View at Scopus
  126. M. R. Christie, D. W. Johnson, C. D. Stallings, and M. A. Hixon, “Self-recruitment and sweepstakes reproduction amid extensive gene flow in a coral-reef fish,” Molecular ecology, vol. 19, no. 5, pp. 1042–1057, 2010. View at Publisher · View at Google Scholar
  127. C. Mora and P. F. Sale, “Are populations of coral reef fish open or closed?” Trends in Ecology and Evolution, vol. 17, no. 9, pp. 422–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. B. P. Kinlan, S. D. Gaines, and S. E. Lester, “Propagule dispersal and the scales of marine community process,” Diversity and Distributions, vol. 11, no. 2, pp. 139–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. R. K. Cowen, C. B. Paris, and A. Srinivasan, “Scaling of connectivity in marine populations,” Science, vol. 311, no. 5760, pp. 522–527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. C. E. Bird, B. S. Holland, B. W. Bowen, and R. J. Toonen, “Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories,” Molecular Ecology, vol. 16, no. 15, pp. 3173–3186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. P. L. Colin, “Fishes as living tracers of connectivity in the tropical western North Atlantic: I. Distribution of the neon gobies, genus Elacatinus (Pisces: Gobiidae),” Zootaxa, no. 2370, pp. 36–52, 2010.
  132. G. P. Jones, M. Srinivasan, and G. R. Almany, “Population connectivity and conservation of marine biodiversity,” Oceanography, vol. 20, pp. 42–53, 2007.
  133. C. M. Roberts, J. A. Bohnsack, F. Gell, J. P. Hawkins, and R. Goodridge, “Effects of marine reserves on adjacent fisheries,” Science, vol. 294, no. 5548, pp. 1920–1923, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. B. S. Halpern and R. R. Warner, “Matching marine reserve design to reserve objectives,” Proceedings of the Royal Society B, vol. 270, no. 1527, pp. 1871–1878, 2003. View at Publisher · View at Google Scholar