About this Journal Submit a Manuscript Table of Contents
Journal of Marine Biology
Volume 2011 (2011), Article ID 839134, 17 pages
http://dx.doi.org/10.1155/2011/839134
Research Article

Phylogeography of the Pacific Blueline Surgeonfish, Acanthurus nigroris, Reveals High Genetic Connectivity and a Cryptic Endemic Species in the Hawaiian Archipelago

1Hawai'i Institute of Marine Biology, P.O. Box 1346, Kane'ohe, HI 96744, USA
2Department of Marine Sciences, University of Puerto Rico, P.O. Box 9000, Mayagüez 00681, Puerto Rico
3Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA

Received 16 June 2010; Accepted 11 October 2010

Academic Editor: Kim Selkoe

Copyright © 2011 Joseph D. DiBattista et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. A. Rocha, M. T. Craig, and B. W. Bowen, “Phylogeography and the conservation of coral reef fishes,” Coral Reefs, vol. 26, no. 3, pp. 501–512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. A. Treml, P. N. Halpin, D. L. Urban, and L. F. Pratson, “Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation,” Landscape Ecology, vol. 23, no. 1, pp. 19–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. K. Cowen, “Larval dispersal and marine population connectivity,” Annual Review of Marine Science, vol. 1, pp. 443–466, 2009.
  4. J. A. H. Benzie, “Genetic structure of coral reef organisms: ghosts of dispersal past,” American Zoologist, vol. 39, no. 1, pp. 131–145, 1999. View at Scopus
  5. B. W. Bowen, A. L. Bass, L. A. Rocha, W. S. Grant, and D. R. Robertson, “Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale,” Evolution, vol. 55, no. 5, pp. 1029–1039, 2001. View at Scopus
  6. L. van Herwerden, J. Benzie, and C. Davies, “Microsatellite variation and population genetic structure of the red throat emperor on the Great Barrier Reef,” Journal of Fish Biology, vol. 62, no. 5, pp. 987–999, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. B. Horne, L. van Herwerden, J. H. Choat, and D. R. Robertson, “High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners,” Molecular Phylogenetics and Evolution, vol. 49, no. 2, pp. 629–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Saenz-Agudelo, G. P. Jones, S. R. Thorrold, and S. Planes, “Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios,” Molecular Ecology, vol. 18, no. 8, pp. 1765–1776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. M. R. Christie, D. W. Johnson, C. D. Stallings, and M. A. Hixon, “Self-recruitment and sweepsteakes reproduction amid extensive gene flow in a coral-reef fish,” Molecular Ecology, vol. 19, no. 5, pp. 1042–1057, 2010.
  10. M. E. Hellberg, R. S. Burton, J. E. Neigel, and S. R. Palumbi, “Genetic assessment of connectivity among marine populations,” Bulletin of Marine Science, vol. 70, no. 1, pp. 273–290, 2002. View at Scopus
  11. G. Bernardi, S. J. Holbrook, R. J. Schmitt, and N. L. Crane, “Genetic evidence for two distinct clades in a French Polynesian population of the coral reef three-spot damselfish Dascyllus trimaculatus,” Marine Biology, vol. 143, no. 3, pp. 485–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. G. P. Jones, S. Planes, and S. R. Thorrold, “Coral reef fish larvae settle close to home,” Current Biology, vol. 15, no. 14, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Planes, G. P. Jones, and S. R. Thorrold, “Larval dispersal connects fish populations in a network of marine protected areas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5693–5697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. K. Cowen, K. M. M. Lwiza, S. Sponaugle, C. B. Paris, and D. B. Olson, “Connectivity of marine populations: open or closed?” Science, vol. 287, no. 5454, pp. 857–859, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Taylor and M. E. Hellberg, “Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish,” Science, vol. 299, no. 5603, pp. 107–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. A. Rocha, D. R. Robertson, J. Roman, and B. W. Bowen, “Ecological speciation in tropical reef fishes,” Proceedings of the Royal Society B, vol. 272, no. 1563, pp. 573–579, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. P. Kinlan and S. D. Gaines, “Propagule dispersal in marine and terrestrial environments: a community perspective,” Ecology, vol. 84, no. 8, pp. 2007–2020, 2003. View at Scopus
  18. W. O. McMillan and S. R. Palumbi, “Concordant evolutionary patterns among Indo-West Pacific Butterflyfishes,” Proceedings of the Royal Society B, vol. 260, no. 1358, pp. 229–236, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. C. White, K. A. Selkoe, J. Watson, D. A. Siegel, D. C. Zacherl, and R. J. Toonen, “Ocean currents help explain population genetic structure,” Proceedings of the Royal Society B, vol. 277, no. 1688, pp. 1685–1694, 2010. View at Publisher · View at Google Scholar
  20. G. R. Almany, M. L. Berumen, S. R. Thorrold, S. Planes, and G. P. Jones, “Local replenishment of coral reef fish populations in a marine reserve,” Science, vol. 316, no. 5825, pp. 742–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. O. Conover, L. M. Clarke, S. B. Munch, and G. N. Wagner, “Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation,” Journal of Fish Biology, vol. 69, pp. 21–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. L. A. Rocha, A. L. Bass, D. R. Robertson, and B. W. Bowen, “Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae),” Molecular Ecology, vol. 11, no. 2, pp. 243–252, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Weersing and R. J. Toonen, “Population genetics, larval dispersal, and connectivity in marine systems,” Marine Ecology Progress Series, vol. 393, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Felsenstein, “How can we infer geography and history from gene frequencies?” Journal of Theoretical Biology, vol. 96, no. 1, pp. 9–20, 1982. View at Scopus
  25. H. K. Voris, “Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations,” Journal of Biogeography, vol. 27, no. 5, pp. 1153–1167, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Siddall, E. J. Rohling, A. Almogi-Labin et al., “Sea-level fluctuations during the last glacial cycle,” Nature, vol. 423, no. 6942, pp. 853–858, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Yokoyama, K. Lambeck, P. De Deckker, P. Johnston, and L. K. Fifield, “Timing of the Last Glacial Maximum from observed sea-level minima,” Nature, vol. 406, no. 6797, pp. 713–716, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Briggs, Marine Zoogeography, McGraw–Hill, New York, NY, USA, 1974.
  29. C. Mora and P. F. Sale, “Are populations of coral reef fish open or closed?” Trends in Ecology and Evolution, vol. 17, no. 9, pp. 422–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Moritz, “Defining “evolutionarily significant units” for conservation,” Trends in Ecology and Evolution, vol. 9, no. 10, pp. 373–375, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Randall, Reef and Shore Fishes of the Hawaiian Islands, University of Hawaii Press, Honolulu, Hawaii, USA, 2007.
  32. E. A. Kay, Little Worlds of the Pacific: An Essay on Pacific Basin Biogeography, University of Hawaii Press, Honolulu, Hawaii, USA, 1980.
  33. I. A. Abbott, Marine Red Algae of the Hawaiian Islands, Bishop Museum Press, Honolulu, Hawaii, USA, 1999.
  34. J. E. Randall and J. L. Earle, “Annotated checklist of the shore fishes of the Marquesas Islands,” Occasional Papers Bishop Museum, vol. 66, pp. 1–39, 2000.
  35. J. P. Price and D. A. Clague, “How old is the Hawaiian biota? Geology and phylogeny suggest recent divergence,” Proceedings of the Royal Society B, vol. 269, no. 1508, pp. 2429–2435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. T. Craig, J. A. Eble, B. W. Bowen, and D. R. Robertson, “High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae),” Marine Ecology Progress Series, vol. 334, pp. 245–254, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. T. Craig, J. A. E. Eble, and B. W. Bowen, “Origins, ages, and population histories: comparative phylogeography of endemic Hawaiian butterflyfishes (genus Chaetodon),” Journal of Biogeography, vol. 37, no. 11, pp. 2125–2136, 2010. View at Publisher · View at Google Scholar
  38. J. A. Eble, R. J. Toonen, and B. W. Bowen, “Endemism and dispersal: comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago,” Marine Biology, vol. 156, no. 4, pp. 689–698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Eble, L. A. Rocha, M. T. Craig, and B. W. Bowen, “Not all larvae stay close to home: long-distance dispersal in Indo-Pacific reef fishes with a focus on the Brown Surgeonfish (Acanthurus nigrofuscus),” Journal of Marine Biology. In press.
  40. A. M. Friedlander and E. E. DeMartini, “Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators,” Marine Ecology Progress Series, vol. 230, pp. 253–264, 2002. View at Scopus
  41. C. M. Roberts, J. A. Bohnsack, F. Gell, J. P. Hawkins, and R. Goodridge, “Effects of marine reserves on adjacent fisheries,” Science, vol. 294, no. 5548, pp. 1920–1923, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. T. P. Hughes, D. R. Bellwood, and S. R. Connolly, “Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs,” Ecology Letters, vol. 5, no. 6, pp. 775–784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. R. F. Myers, Micronesian Reef Fishes, Coral Graphics, Barrigada, Guam, 1991.
  44. A. M. Hart and G. R. Russ, “Response of herbivorous fishes to crown-of-thorns starfish Acanthaster planci outbreaks. III. Age, growth, mortality and maturity indices of Acanthurus nigrofuscus,” Marine Ecology Progress Series, vol. 136, no. 1–3, pp. 25–35, 1996. View at Scopus
  45. B. N. Tissot and L. E. Hallacher, “Effects of aquarium collectors on Coral Reef Fishes in Kona, Hawaii,” Conservation Biology, vol. 17, no. 6, pp. 1759–1768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. P. J. Doherty, S. Planes, and P. Mather, “Gene flow and larval duration in seven species of fish from the Great Barrier Reef,” Ecology, vol. 76, no. 8, pp. 2373–2391, 1995. View at Scopus
  47. R. Fisher, J. M. Leis, D. L. Clark, and S. K. Wilson, “Critical swimming speeds of late-stage coral reef fish larvae: variation within species, among species and between locations,” Marine Biology, vol. 147, no. 5, pp. 1201–1212, 2005. View at Publisher · View at Google Scholar
  48. J. E. Randall, “A revision of the surgeon fish genus Acanthurus,” Pacific Science, vol. 10, no. 2, pp. 159–235, 1956.
  49. N. D. Meeker, S. A. Hutchinson, L. Ho, and N. S. Trede, “Method for isolation of PCR-ready genomic DNA from zebrafish tissues,” BioTechniques, vol. 43, no. 5, pp. 610–614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. B. Song, T. J. Near, and L. M. Page, “Phylogenetic relations among percid fishes as inferred from mitochondrial cytochrome b DNA sequence data.,” Molecular Phylogenetics and Evolution, vol. 10, no. 3, pp. 343–353, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Taberlet, A. Meyer, and J. Bouvert, “Unusually large mitochondrial variation in populations of the blue tit, Parus caeruleus,” Molecular Ecology, vol. 1, pp. 27–36, 1992.
  52. A. J. Drummond, B. Ashton, M. Cheung, et al., Geneious v4.8, 2009, http://www.geneious.com.
  53. D. Posada, “jModelTest: Phylogenetic Model Averaging,” Molecular Biology and Evolution, vol. 25, no. 7, pp. 1253–1256, 2008. View at Publisher · View at Google Scholar
  54. S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood,” Systematic Biology, vol. 52, no. 5, pp. 696–704, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Tamura and M. Nei, “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees,” Molecular Biology and Evolution, vol. 10, no. 3, pp. 512–526, 1993. View at Scopus
  56. R. Excoffier, L. G. Laval, and S. Schneider, “Arlequin ver. 3.0: an integrated software package for population genetics data analysis,” Evolutionary Bioinformatics Online, vol. 1, pp. 47–50, 2005.
  57. M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, NY, USA, 1987.
  58. L. Excoffier, P. E. Smouse, and J. M. Quattro, “Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data,” Genetics, vol. 131, no. 2, pp. 479–491, 1992. View at Scopus
  59. Y. Benjamini and D. Yekutieli, “The control of the false discovery rate in multiple testing under dependency,” Annals of Statistics, vol. 29, no. 4, pp. 1165–1188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Dupanloup, S. Schneider, and L. Excoffier, “A simulated annealing approach to define the genetic structure of populations,” Molecular Ecology, vol. 11, no. 12, pp. 2571–2581, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Tajima, “Statistical method for testing the neutral mutation hypothesis by DNA polymorphism,” Genetics, vol. 123, no. 3, pp. 585–595, 1989. View at Scopus
  62. Y.-X. Fu, “Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection,” Genetics, vol. 147, no. 2, pp. 915–925, 1997. View at Scopus
  63. W. A. Gosline, “The inshore fish fauna of Johnston Island, a central Pacific atoll,” Pacific Science, vol. 9, pp. 442–480, 1955.
  64. H.-J. Bandelt, P. Forster, and A. Röhl, “Median-joining networks for inferring intraspecific phylogenies,” Molecular Biology and Evolution, vol. 16, no. 1, pp. 37–48, 1999. View at Scopus
  65. S. Schneider and L. Excoffier, “Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA,” Genetics, vol. 152, no. 3, pp. 1079–1089, 1999. View at Scopus
  66. A. R. Rogers and H. Harpending, “Population growth makes waves in the distribution of pairwise genetic differences,” Molecular Biology and Evolution, vol. 9, no. 3, pp. 552–569, 1992. View at Scopus
  67. W. H. Li, “Distribution of nucleotide differences between two randomly chosen cistrons in a finite population,” Genetics, vol. 85, no. 2, pp. 331–337, 1977. View at Scopus
  68. H. A. Lessios, “The great American schism: divergence of marine organisms after the rise of the Central american Isthmus,” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 63–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Beerli and J. Felsenstein, “Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 8, pp. 4563–4568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Hey and R. Nielsen, “Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2785–2790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Beerli, “Estimation of the population scaled mutation rate from microsatellite data,” Genetics, vol. 177, no. 3, pp. 1967–1968, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Beerli, “Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations,” Molecular Ecology, vol. 13, no. 4, pp. 827–836, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. A. RoyChoudhury and M. Stephens, “Fast and accurate estimation of the population-scaled mutation rate, θ, from microsatellite genotype data,” Genetics, vol. 176, no. 2, pp. 1363–1366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Beerli, “How to use Migrate or why are markov chain monte carlo programs difficult to use?” in Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, Eds., pp. 42–79, Cambridge University Press, Cambridge, UK, 2009.
  75. P. Beerli and J. Felsenstein, “Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach,” Genetics, vol. 152, no. 2, pp. 763–773, 1999. View at Scopus
  76. P. Beerli, “Migrate: documentation and program, part of lamarc, version 2.0,” 2004, http://popgen.sc.fsu.edu/Migrate/Migrate-n.html.
  77. W. S. Grant and B. W. Bowen, “Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation,” Journal of Heredity, vol. 89, no. 5, pp. 415–426, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Beerli, “Comparison of Bayesian and maximum-likelihood inference of population genetic parameters,” Bioinformatics, vol. 22, no. 3, pp. 341–345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. D. R. Bellwood, L. van Herwerden, and N. Konow, “Evolution and biogeography of marine angelfishes,” Molecular Phylogenetics and Evolution, vol. 33, no. 1, pp. 140–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. L. A. Rocha, “Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (Labridae), with the revalidation of two species,” Copeia, vol. 2004, no. 4, pp. 770–782, 2004. View at Scopus
  81. J. L. Fessler and M. W. Westneat, “Molecular phylogenetics of the butterflyfishes (Chaetodontidae): taxonomy and biogeography of a global coral reef fish family,” Molecular Phylogenetics and Evolution, vol. 45, no. 1, pp. 50–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. L. A. Rocha, K. C. Lindeman, C. R. Rocha, and H. A. Lessios, “Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae),” Molecular Phylogenetics and Evolution, vol. 48, no. 3, pp. 918–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. I. D. Williams, W. J. Walsh, R. E. Schroeder, A. M. Friedlander, B. L. Richards, and K. A. Stamoulis, “Assessing the importance of fishing impacts on Hawaiian coral reef fish assemblages along regional-scale human population gradients,” Environmental Conservation, vol. 35, no. 3, pp. 261–272, 2008. View at Publisher · View at Google Scholar
  84. C. Stevenson, L. S. Katz, F. Micheli et al., “High apex predator biomass on remote Pacific islands,” Coral Reefs, vol. 26, no. 1, pp. 47–51, 2007. View at Publisher · View at Google Scholar
  85. S. A. Sandin, J. E. Smith, E. E. DeMartini et al., “Baselines and degradation of coral reefs in the Northern Line Islands,” PLoS ONE, vol. 3, no. 2, Article ID e1548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. E. C. Franklin, C. V. Brong, A. R. Dow, and M. T. Craig, “Length-weight and length-length relationships of three endemic butterflyfish species (Chaetodontidae) from coral reefs of the Northwestern Hawaiian Islands, USA,” Journal of Applied Ichthyology, vol. 25, no. 5, pp. 616–617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. G. A. Winans, “Geographic variation in the milkfish Chanos chanos. I Biochemical evidence,” Evolution, vol. 34, no. 3, pp. 558–874, 1980.
  88. J. S. Reece, B. W. Bowen, K. Joshi, V. Goz, and A. F. Larson, “Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific,” Journal of Heredity, vol. 101, no. 4, pp. 391–402, 2010.
  89. J. H. Choat, “Phylogeography and reef fishes: bringing ecology back into the argument,” Journal of Biogeography, vol. 33, no. 6, pp. 967–968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. E. Neigel, “Is FST obsolete?” Conservation Genetics, vol. 3, no. 2, pp. 167–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. C. E. Bird, B. S. Holland, B. W. Bowen, and R. J. Toonen, “Contrasting phylogeography in three endemic Hawaiian limpets (Cellana spp.) with similar life histories,” Molecular Ecology, vol. 16, no. 15, pp. 3173–3186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. R. Christie, B. N. Tissot, M. A. Albins, et al., “Larval connectivity in an effective network of marine protected areas,” PLos ONE. In press.
  93. D. R. Kobayashi, “Colonization of the Hawaiian Archipelago via Johnston Atoll: a characterization of oceanographic transport corridors for pelagic larvae using computer simulation,” Coral Reefs, vol. 25, no. 3, pp. 407–417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. T. F. Hourigan and E. S. Reese, “Mid-ocean isolation and the evolution of Hawaiian reef fishes,” Trends in Ecology and Evolution, vol. 2, no. 7, pp. 187–191, 1987. View at Scopus
  95. J. E. Randall, “Zoogeography of shore fishes of the Indo-Pacific region,” Zoological Studies, vol. 37, no. 4, pp. 227–268, 1998. View at Scopus
  96. S. Ralston, “A new record of the Pomacanthid fish Centropyge interruptus from the Hawaiian islands,” Japanese Journal of Ichthyology, vol. 27, no. 4, pp. 327–329, 1981.
  97. R. L. Pyle, “Rare and unusual marines: the Japanese pygmy angelfish Centropyge interruptus (Tanaka),” Freshwater and Marine Aquarium, vol. 13, no. 3, pp. 35–37, 1990.
  98. B. C. Mundy, Checklist of the Fishes of the Hawaiian Archipelago, Bishop Museum Press, Honolulu, Hawaii, USA, 2005.
  99. J. E. Randall, J. D. DiBattista, and C. Wilcox, “Acanthurus nigros Günther, a valid species of surgeonfish, distinct from the Hawaiian A. nigroris Valenciennes,” Pacific Science. In press.
  100. M. Leray, R. Beldade, S. J. Holbrook, R. J. Schmitt, S. Planes, and G. Bernardi, “Allopatric divergence and speciation in coral reef fish: the three-spot dascyllus, Dascyllus trimaculatus, species complex,” Evolution, vol. 64, no. 5, pp. 1218–1230, 2010. View at Publisher · View at Google Scholar
  101. A. F. Brown, L. M. Kann, and D. M. Rand, “Gene flow versus local adaptation in the northern acorn barnacle, Semibalanus balanoides: insights from mitochondrial DNA variation,” Evolution, vol. 55, no. 10, pp. 1972–1979, 2001. View at Scopus
  102. D. Hedgecock, “Does variance in reproductive success limit effective population sizes of marine organisms?” in Genetics and Evolution of Aquatic Organisms, A. R. Beaumont, Ed., pp. 122–134, Chapman & Hall, London, UK, 1994.
  103. K. C. Hsu, J. P. Chen, and K. T. Shao, “Molecular phylogeny of Chaetodon (Teleostei: Chaetodontidae) in the Indo-West Pacific: evolution in geminate species pairs and species groups,” The Raffles Bulletin of Zoology, vol. 14, pp. 77–86, 2007.
  104. C. A. Stepien, J. E. Randall, and R. H. Rosenblatt, “Genetic and morphological divergence of a circumtropical complex of goatfishes: Mulloidichthys vanicolensis, M. dentatus, and M. martinicus,” Pacific Science, vol. 48, pp. 44–56, 1994.
  105. G. Bernardi, S. J. Holbrook, and R. J. Schmitt, “Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus,” Marine Biology, vol. 138, no. 3, pp. 457–465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Planes and C. Fauvelot, “Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean,” Evolution, vol. 56, no. 2, pp. 378–399, 2002. View at Scopus
  107. L. K. Bay, J. H. Choat, L. Van Herwerden, and D. R. Robertson, “High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?” Marine Biology, vol. 144, no. 4, pp. 757–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. E. A. Kay and S. R. Palumbi, “Endemism and evolution in Hawaiian marine invertebrates,” Trends in Ecology and Evolution, vol. 2, no. 7, pp. 183–186, 1987. View at Scopus
  109. V. G. Springer, Pacific Plate Biogeography, With Special Reference to Shorefishes, Smithsonian Institution, Washington, DC, USA, 1982.
  110. J. E. Randall, “Zoogeographic analysis of the inshore Hawaiian fish fauna,” in Marine and Coastal Biodiversity in the Tropical Island Pacific Region, Species Systematics and Information Management Priorities, J. E. Maragos, M. N. A. Peterson, L. G. Eldredge, J. E. Bardach, and H. F. Takeuchi, Eds., pp. 193–203, Bishop Museum Press, Honolulu, Hawaii, USA, 1995.
  111. K. D. Crow, H. Munehara, and G. Bernardi, “Sympatric speciation in a genus of marine reef fishes,” Molecular Ecology, vol. 19, no. 10, pp. 2089–2105, 2010. View at Publisher · View at Google Scholar
  112. S. V. Edwards, “Relevance of microevolutionary processes for higher level molecular systematic,” in Avian Molecular Systematics and Evolution, D. P. Mindell, Ed., pp. 251–278, Academic Press, New York, NY, USA, 1997.
  113. M. A. McCartney, J. Acevedo, C. Heredia et al., “Genetic mosaic in a marine species flock,” Molecular Ecology, vol. 12, no. 11, pp. 2963–2973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. D. J. Fraser and L. Bernatchez, “Adaptive evolutionary conservation: towards a unified concept for defining conservation units,” Molecular Ecology, vol. 10, no. 12, pp. 2741–2752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. J. E. Randall, J. T. Williams, and L. A. Rocha, “The Indo-Pacific tetraodontid fish Canthigaster coronata, a complex of three species,” Smithiana Bulletin, vol. 9, pp. 3–13, 2008.
  116. J. E. Randall and J. K. Schultz, “Cirrhitops mascarenensis, a new species of hawkfish from the Mascarene Islands, southwestern Indian Ocean,” Smithiana Bulletin, vol. 9, pp. 15–20, 2008.
  117. J. E. Randall and L. A. Rocha, “Halichoeres claudia sp. nov., a new Indo-Pacific wrasse (Perciformes: Labridae), the fourth species of the H. ornatissimus complex,” Zoological Studies, vol. 48, no. 5, pp. 709–718, 2009.
  118. M. T. Craig and J. E. Randall, “Two new species of the Indo-Pacific clingfish genus Discotrema (Gobiesocidae),” Copeia, vol. 2008, no. 1, pp. 68–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Drew, G. R. Allen, L. Kaufman, and P. H. Barber, “Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes,” Conservation Biology, vol. 22, no. 4, pp. 965–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. J. E. Randall and L. A. Rocha, “Chaetodontoplus poliourus, a new angelfish (Percirformes: Pomacanthidae) from the tropical western Pacific,” Raffles Bulletin of Zoology, vol. 57, no. 2, pp. 511–520, 2009.
  121. J. E. Randall and J. K. Schultz, “Pictichromis dinar, a new dottyback (Perciformes: Pseudochromidae) from Indonesia,” Aqua, vol. 15, no. 4, pp. 169–176, 2009.
  122. M. Bariche and G. Bernardi, “Lack of a genetic bottleneck in a recent Lessepsian bioinvader, the blue-barred parrotfish, Scarus ghobban,” Molecular Phylogenetics and Evolution, vol. 53, no. 2, pp. 592–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. M. T. Craig, R. T. Graham, R. A. Torres, et al., “How many species of goliath grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species,” Endangered Species Research, vol. 7, pp. 167–174, 2009.
  124. B. W. Bowen, A. L. Bass, A. Muss, J. Carlin, and D. R. Robertson, “Phylogeography of two Atlantic squirrelfishes (family Holocentridae): exploring links between pelagic larval duration and population connectivity,” Marine Biology, vol. 149, no. 4, pp. 899–913, 2006. View at Publisher · View at Google Scholar
  125. D. Bickford, D. J. Lohman, N. S. Sodhi et al., “Cryptic species as a window on diversity and conservation,” Trends in Ecology and Evolution, vol. 22, no. 3, pp. 148–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. T. S. Zemlak, R. D. Ward, A. D. Connell, B. H. Holmes, and P. D. N. Hebert, “DNA barcoding reveals overlooked marine fishes,” Molecular Ecology Resources, vol. 9, supplement 1, pp. 237–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. J. K. Schultz, R. L. Pyle, E. DeMartini, and B. W. Bowen, “Genetic connectivity among color morphs and Pacific archipelagos for the flame angelfish, Centropyge loriculus,” Marine Biology, vol. 151, no. 1, pp. 167–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. R. J. Toonen, K. R. Andrews, I. Baums, et al., “Defining boundaries for applying Ecosystem-based management: a multispecies case study of marine connectivity across the Hawaiian Archipelago,” Journal of Marine Biology. In press.
  129. J. B. Shaklee and P. B. Samollow, “Genetic variation and population structure in a deepwater snapper, Pristipomoides filamentosus, in the Hawaiian Archipelago,” Fishery Bulletin, vol. 82, no. 4, pp. 703–713, 1984. View at Scopus
  130. M. L. Ramon, P. A. Nelson, E. De Martini, W. J. Walsh, and G. Bernardi, “Phylogeography, historical demography, and the role of post-settlement ecology in two Hawaiian damselfish species,” Marine Biology, vol. 153, no. 6, pp. 1207–1217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. M. A. J. Rivera, C. D. Kelley, and G. K. Roderick, “Subtle population genetic structure in the Hawaiian grouper, Epinephelus quernus (Serranidae) as revealed by mitochondrial DNA analyses,” Biological Journal of the Linnean Society, vol. 81, no. 3, pp. 449–468, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. J. A. Eble, R. J. Toonen, L. Sorenson, L. V. Basch, Y. P. Papastamatiou, and B. W. Bowen, “Phylogeography and historical demography of the Yellow Tang (Zebrasoma flavescens) indicate a Hawaiian origin for an Indo-Pacific reef fish,” Marine Ecology Progress Series. In press.