About this Journal Submit a Manuscript Table of Contents
Journal of Marine Biology
Volume 2012 (2012), Article ID 854849, 7 pages
http://dx.doi.org/10.1155/2012/854849
Research Article

Water Flow Affects Zooplankton Feeding by the Scleractinian Coral Galaxea fascicularis on a Polyp and Colony Level

Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University and Research Centre, 6708 WD Wageningen, The Netherlands

Received 24 September 2012; Revised 11 November 2012; Accepted 14 November 2012

Academic Editor: Horst Felbeck

Copyright © 2012 Tim Wijgerde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Houlbrèque and C. Ferrier-Pagès, “Heterotrophy in tropical scleractinian corals,” Biological Reviews, vol. 84, no. 1, pp. 1–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Ferrier-Pagès, J. Witting, E. Tambutté, and K. P. Sebens, “Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata,” Coral Reefs, vol. 22, no. 3, pp. 229–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Houlbrèque, E. Tambutté, D. Allemand, and C. Ferrier-Pagès, “Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata,” Journal of Experimental Biology, vol. 207, no. 9, pp. 1461–1469, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. G. Grottoli, L. J. Rodrigues, and J. E. Palardy, “Heterotrophic plasticity and resilience in bleached corals,” Nature, vol. 440, no. 7088, pp. 1186–1189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Wijgerde, R. Diantari, M. W. Lewaru, J. A. J. Verreth, and R. Osinga, “Extracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis,” Journal of Experimental Biology, vol. 214, no. 20, pp. 3351–3357, 2011. View at Publisher · View at Google Scholar
  6. R. Osinga, M. Schutter, B. Griffioen et al., “The biology and economics of coral growth,” Marine Biotechnology, vol. 13, no. 4, pp. 658–671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Osinga, S. van Delft, M. W. Lewaru, M. Janse, and J. A. J. Verreth, “Determination of prey capture rates in the stony coral Galaxea fascicularis: a critical reconsideration of the clearance rate concept,” Journal of the Marine Biological Association of the United Kingdom, vol. 92, no. 4, pp. 713–719, 2012. View at Publisher · View at Google Scholar
  8. T. Wijgerde, P. Spijkers, J. Verreth, and R. Osinga, “Epizoic acoelomorph flatworms compete with their coral host for zooplankton,” Coral Reefs, vol. 30, no. 3, p. 665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. F. Dai and M. C. Lin, “The effects of flow on feeding of three gorgonians from southern Taiwan,” Journal of Experimental Marine Biology and Ecology, vol. 173, no. 1, pp. 57–69, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. K. E. Fabricius, A. Genin, and Y. Benayahu, “Flow-dependent herbivory and growth in zooxanthellae-free soft corals,” Limnology and Oceanography, vol. 40, no. 7, pp. 1290–1301, 1995. View at Scopus
  11. K. B. Heidelberg, K. P. Sebens, and J. E. Purcell, “Effects of prey escape behavior and water flow on prey capture by the scleractinian coral, Meandrina Meandrites,” in Proceedings of the 8th International Coral Reef Symposium, vol. 2, pp. 1081–1086, 1997.
  12. B. Helmuth and K. Sebens, “The influence of colony morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus),” Journal of Experimental Marine Biology and Ecology, vol. 165, no. 2, pp. 251–278, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. M. C. Lin, C. M. Liao, and C. F. Dai, “Modeling the effects of satiation on the feeding rate of a colonial suspension feeder, Acanthogorgia vegae, in a circulating system under lab conditions,” Zoological Studies, vol. 41, no. 4, pp. 355–365, 2002. View at Scopus
  14. K. P. Sebens, S. P. Grace, B. Helmuth, E. J. Maney, and J. S. Miles, “Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernoss and Porites porites in a field enclosure,” Marine Biology, vol. 131, no. 2, pp. 347–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. K. P. Sebens and A. S. Johnson, “Effects of water movement on prey capture and distribution of reef corals,” Hydrobiologia, vol. 226, no. 2, pp. 91–101, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. K. P. Sebens, J. Witting, and B. Helmuth, “Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabills (Duchassaing and Michelotti),” Journal of Experimental Marine Biology and Ecology, vol. 211, no. 1, pp. 1–28, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. Brusca and G. J. Brusca, Invertebrates, Sinauer Associates, Sunderland, Mass, USA, 2003.
  18. B. A. Best, “Passive suspension feeding in a sea pen: effects of ambient flow on volume flow rate and filtering efficiency,” Biological Bulletin, vol. 175, no. 3, pp. 332–342, 1988. View at Publisher · View at Google Scholar
  19. T. Hunter, “Suspension feeding in oscillating flow: the effect of colony morphology and flow regime on plankton capture by the hydroid Obelia longissima,” Biological Bulletin, vol. 176, no. 1, pp. 41–49, 1989.
  20. C. S. McFadden, “Colony fission increases particle capture rates of a soft coral: advantages of being a small colony,” Journal of Experimental Marine Biology and Ecology, vol. 103, no. 1–3, pp. 1–20, 1986. View at Scopus
  21. M. R. Patterson, “Patterns of whole colony prey capture in the octocoral, Alcyonium siderium,” Biological Bulletin, vol. 167, no. 3, pp. 613–629, 1984. View at Scopus
  22. S. A. Wainwright and M. A. R. Koehl, “The nature of flow and the reaction of benthic cnidaria to it,” in Coelenterate Ecology and Behavior, G. O. Mackie, Ed., pp. 5–21, Pregamon Press, New York, NY, USA, 1976.
  23. K. R. N. Anthony, “Prey capture by the sea anemone Metridium senile (L.): effects of body size, flow regime, and upstream neighbors,” Biological Bulletin, vol. 192, no. 1, pp. 73–86, 1997. View at Scopus
  24. A. B. Leonard, J. R. Strickler, and N. D. Holland, “Effects of current speed on filtration during suspension feeding in Oligometra serripinna (Echinodermata: Crinoidea),” Marine Biology, vol. 97, no. 1, pp. 111–125, 1988. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. S. Hii, C. L. Soo, and H. C. Liew, “Feeding of scleractinian coral, Galaxea fascicularis, on Artemia salina nauplii in captivity,” Aquaculture International, vol. 17, no. 4, pp. 363–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Genin, L. Karp, and A. Miroz, “Effects of flow on competitive superiority in scleractinian corals,” Limnology and Oceanography, vol. 39, no. 4, pp. 913–924, 1994. View at Scopus
  27. M. Schutter, S. Kranenbarg, R. H. Wijffels, J. Verreth, and R. Osinga, “Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis,” Marine Biology, vol. 158, no. 4, pp. 769–777, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Purser, A. I. Larsson, L. Thomsen, and D. van Oevelen, “The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates,” Journal of Experimental Marine Biology and Ecology, vol. 395, no. 1-2, pp. 55–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. C. Pratt, “Living where the flow is right: How flow affects feeding in bryozoans,” Integrative and Comparative Biology, vol. 48, no. 6, pp. 808–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. I. Larsson and P. R. Jonsson, “Barnacle larvae actively select flow environments supporting post-settlement growth and survival,” Ecology, vol. 87, no. 8, pp. 1960–1966, 2006. View at Scopus
  31. J. E. N. Veron, Corals of the World, Australian Institute of Marine Science, Townsville, Australia, 2000.
  32. M. S. Naumann, C. Mayr, U. Struck, and C. Wild, “Coral mucus stable isotope composition and labeling: experimental evidence for mucus uptake by epizoic acoelomorph worms,” Marine Biology, vol. 157, no. 11, pp. 2521–2531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Wijgerde, P. Schots, E. van Onselen et al., “Epizoic acoelomorph flatworms impair zooplankton feeding by the scleractinian coral Galaxea fascicularis,” Biology Open. In press. View at Publisher · View at Google Scholar
  34. O. Barneah, I. Brickner, M. Hooge, V. M. Weis, T. C. LaJeunesse, and Y. Benayahu, “Three party symbiosis: acoelomorph worms, corals and unicellular algal symbionts in Eilat (Red Sea),” Marine Biology, vol. 151, no. 4, pp. 1215–1223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Haapkylä, A. S. Seymour, O. Barneah et al., “Association of Waminoa sp. (Acoela) with corals in the Wakatobi Marine Park, South-East Sulawesi, Indonesia,” Marine Biology, vol. 156, no. 5, pp. 1021–1027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. E. H. Gladfelter, “Circulation of fluids in the gastrovascular system of the reef coral Acropora cervicornis,” Biological Bulletin, vol. 165, no. 3, pp. 619–636, 1983.
  37. I. J. Domart-Coulon, N. Traylor-Knowles, E. Peters et al., “Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa,” Coral Reefs, vol. 25, no. 4, pp. 531–543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Schutter, J. Crocker, A. Paijmans et al., “The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis,” Coral Reefs, vol. 29, no. 3, pp. 737–748, 2010. View at Publisher · View at Google Scholar · View at Scopus