About this Journal Submit a Manuscript Table of Contents
Journal of Nucleic Acids
Volume 2010 (2010), Article ID 426505, 14 pages
http://dx.doi.org/10.4061/2010/426505
Research Article

Effect of N3-Methyladenine and an Isosteric Stable Analogue on DNA Polymerization

1Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
2Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
3Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
4Molecular Mutagenesis and DNA Repair Unit, Department of Epidemiology and Prevention, National Cancer Research Institute (IST), 16132 Genova, Italy

Received 29 January 2010; Accepted 25 June 2010

Academic Editor: Ramón Eritja

Copyright © 2010 Samuel Settles et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Bennet and A. E. Pegg, “Alkylation of DNA in rat tissues following administration of streptozotocin,” Cancer Research, vol. 41, no. 7, pp. 2786–2790, 1981. View at Scopus
  2. L. Tentori and G. Graziani, “Pharmacological strategies to increase the antitumor activity of methylating agents,” Current Medicinal Chemistry, vol. 9, no. 13, pp. 1285–1301, 2002. View at Scopus
  3. B. Rydberg and T. Lindahl, “Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction,” EMBO Journal, vol. 1, no. 2, pp. 211–216, 1982. View at Scopus
  4. L. R. Barrows and P. N. Magee, “Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro,” Carcinogenesis, vol. 3, no. 3, pp. 349–351, 1982. View at Scopus
  5. H. Bartsch, H. Ohshima, D. E. G. Shuker, G. Pignatelli, and S. Calmels, “Exposure of humans to endogenous N-nitroso compounds: implications in cancer etiology,” Mutation Research, vol. 238, no. 3, pp. 255–267, 1990. View at Scopus
  6. S. S. Hecht, “DNA adduct formation from tobacco-specific N-nitrosamines,” Mutation Research, vol. 424, no. 1-2, pp. 127–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. P. D. Lawley, “Carcinogenesis by alkylating agents,” in Chemical Carcinogens, C. E. Searle, Ed., vol. 1 of ACS Monograph 182, pp. 303–484, American Chemical Society, Washington, DC, USA, 2nd edition, 1984.
  8. D. T. Beranek, C. C. Weis, and D. H. Swenson, “A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography,” Carcinogenesis, vol. 1, no. 7, pp. 595–606, 1980. View at Scopus
  9. L. Den Engelse, G. J. Menkveld, R.-J. De Brij, and A. D. Tates, “Formation and stability of alkylated pyrimidines and purines (including imidazole ring-opened 7-alkylguanine) and alkylphosphotriesters in liver DNA of adult rats treated with ethylnitrosourea or dimethylnitrosamine,” Carcinogenesis, vol. 7, no. 3, pp. 393–403, 1986. View at Scopus
  10. G. P. Margison and P. J. O'Connor, “Biological implications of the instability of the N glycosidic bond of 3 methyldeoxyadenosine in DNA,” Biochimica et Biophysica Acta, vol. 331, no. 1, pp. 349–356, 1973. View at Scopus
  11. T. Fujii, T. Saito, and T. Nakasaka, “Purines. XXXIV. 3-methyladenosine and 3-methyl-2'-deoxyadenosine: their synthesis, glycosidic hydrolysis, and ring fission,” Chemical and Pharmaceutical Bulletin, vol. 37, no. 10, pp. 2601–2609, 1989. View at Scopus
  12. S. Boiteux, O. Huisman, and J. Laval, “3-methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli,” EMBO Journal, vol. 3, no. 11, pp. 2569–2573, 1984. View at Scopus
  13. K. Larson, J. Sahm, R. Shenkar, and B. Strauss, “Methylation-induced blocks to in vitro DNA replication,” Mutation Research, vol. 150, no. 1-2, pp. 77–84, 1985. View at Scopus
  14. Y. Zhang, F.-X. Chen, P. Mehta, and B. Gold, “Groove- and sequence-selective alkylation of DNA by sulfonate esters tethered to lexitropsins,” Biochemistry, vol. 32, no. 31, pp. 7954–7965, 1993. View at Scopus
  15. J. D. Kelly, A. Inga, F.-X. Chen et al., “Relationship between DNA methylation and mutational patterns induced by a sequence selective minor groove methylating agent,” Journal of Biological Chemistry, vol. 274, no. 26, pp. 18327–18334, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Monti, P. Campomenosi, Y. Ciribilli et al., “Influences of base excision repair defects on the lethality and mutagenicity induced by Me-lex, a sequence-selective N3-adenine methylating agent,” Journal of Biological Chemistry, vol. 277, no. 32, pp. 28663–28668, 2002. View at Scopus
  17. B. S. Plosky, E. G. Frank, D. A. Berry, G. P. Vennall, J. P. Mcdonald, and R. Woodgate, “Eukaryotic Y-family polymerases bypass a 3-methyl-2-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo,” Nucleic Acids Research, vol. 36, no. 7, pp. 2152–2162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. R. J. Irani and J. SantaLucia Jr., “The synthesis of anti-fixed 3-methyl-3-deaza-2-deoxyadenosine and other 3h-imidazo[4,5-c]pyridine analogs,” Nucleosides, Nucleotides and Nucleic Acids, vol. 21, no. 11-12, pp. 737–751, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Liang, P. Gannett, X. Shi, Y. Zhang, F.-X. Chen, and B. Gold, “DNA sequencing with the hydroperoxide of tetrahydrofuran,” Journal of the American Chemical Society, vol. 116, no. 3, pp. 1131–1132, 1994. View at Scopus
  20. A. M. Maxam and W. Gilbert, “Sequencing end-labeled DNA with base-specific chemical cleavages,” Methods in Enzymology, vol. 65, no. 1, pp. 499–560, 1980. View at Scopus
  21. M. L. Kopka, C. Yoon, D. Goodsell, P. Pjura, and R. E. Dickerson, “The molecular origin of DNA-drug specificity in netropsin and distamycin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 5, pp. 1376–1380, 1985. View at Scopus
  22. M. Coll, J. Aymami, G. A. van der Marel, J. H. van Boom, A. Rich, and A. H.-J. Wang, “Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment,” Biochemistry, vol. 28, no. 1, pp. 310–320, 1989. View at Scopus
  23. D. Shah, J. Kelly, Y. Zhang et al., “Evidence in Escherichia coli that N3-methyladenine lesions induced by a minor groove binding methyl sulfonate ester can be processed by both base and nucleotide excision repair,” Biochemistry, vol. 40, no. 6, pp. 1796–1803, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Chakravarti, G. C. Ibeanu, K. Tano, and S. Mitra, “Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase,” Journal of Biological Chemistry, vol. 266, no. 24, pp. 15710–15715, 1991. View at Scopus
  25. B. P. Engelward, A. Dreslin, J. Christensen, D. Huszar, C. Kurahara, and L. Samson, “Repair-deficient 3-methyladenine DNA glycosylase homozygous mutant mouse cells have increased sensitivity to alkylation-induced chromosome damage and cell killing,” EMBO Journal, vol. 15, no. 4, pp. 945–952, 1996. View at Scopus
  26. M. T. Washington, R. E. Johnson, L. Prakash, and S. Prakash, “Accuracy of lesion bypass by yeast and human DNA polymerase η,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 15, pp. 8355–8360, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. M. D. Walker, S. B. Green, D. P. Byar, et al., “Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery,” New England Journal of Medicine, vol. 303, no. 23, pp. 1323–1329, 1980. View at Scopus
  28. M. S. Mahaley Jr., “Neuro-oncology index and review (adult primary brain tumors). Radiotherapy, chemotherapy, immunotherapy, photodynamic therapy,” Journal of Neuro-Oncology, vol. 11, no. 2, pp. 85–147, 1991. View at Scopus
  29. L. Encell, D. E. G. Shuker, P. G. Foiles, and B. Gold, “The in vitro methylation of DNA by a minor groove binding methyl sulfonate ester,” Chemical Research in Toxicology, vol. 9, no. 3, pp. 563–567, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. D. T. Beranek, C. C. Weis, and D. H. Swenson, “A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography,” Carcinogenesis, vol. 1, no. 7, pp. 595–606, 1980. View at Scopus
  31. S. Varadarajan, D. Shah, P. Dande et al., “DNA damage and cytotoxicity induced by minor groove binding methyl sulfonate esters,” Biochemistry, vol. 42, no. 48, pp. 14318–14327, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Shah and B. Gold, “Evidence in Escherichia coli that N3-methyladenine lesions and cytotoxicity induced by a minor groove binding methyl sulfonate ester can be modulated in vivo by netropsin,” Biochemistry, vol. 42, no. 43, pp. 12610–12616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. B. P. Engelward, J. M. Allan, A. J. Dreslin, J. D. Kelly, B. Gold, and L. D. Samson, “3-Methyladenine DNA lesions induce chromosome aberrations, cell cycle delay, apoptosis and p53,” Journal of Biological Chemistry, vol. 273, pp. 5412–5418, 1998.
  34. M. S. Bobola, S. Varadarajan, N. W. Smith et al., “Human glioma cell sensitivity to the sequence-specific alkylating agent methyl-lexitropsin,” Clinical Cancer Research, vol. 13, pp. 612–620, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Russo, G. Fronza, L. Ottaggio et al., “High frequency of genomic deletions induced by Me-lex, a sequence selective N3-adenine methylating agent, at the Hprt locus in Chinese hamster ovary cells,” Mutation Research, vol. 671, no. 1-2, pp. 58–66, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. C. W. Op het Veld, J. Jansen, M. Z. Zdzienicka, H. Vrieling, and A. A. van Zeeland, “Methyl methanesulfonate-induced hprt mutation spectra in the Chinese hamster cell line CHO9 and its xrcc1-deficient derivative EM-C11,” Mutation Research, vol. 398, no. 1-2, pp. 83–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Monti, R. Iannone, P. Campomenosi et al., “Nucleotide excision repair defect influences lethality and mutagenicity induced by Me-lex, a sequence-selective N3-adenine methylating agent in the absence of base excision repair,” Biochemistry, vol. 43, no. 19, pp. 5592–5599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Monti, Y. Ciribilli, D. Russo et al., “Rev1 and Polζ influence toxicity and mutagenicity of Me-lex, a sequence selective N3-adenine methylating agent,” DNA Repair, vol. 7, no. 3, pp. 431–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. T. E. Spratt, “Klenow fragment-DNA interaction required for the incorporation of nucleotides opposite guanine and O6-methylguanine,” Biochemistry, vol. 36, no. 43, pp. 13292–13297, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. T. E. Spratt, “Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA,” Biochemistry, vol. 40, no. 9, pp. 2647–2652, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. D. McCain, A. S. Meyer, S. S. Schultz, A. Glekas, and T. E. Spratt, “Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli,” Biochemistry, vol. 44, no. 15, pp. 5647–5659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. T. Washington, W. T. Wolfle, T. E. Spratt, L. Prakash, and S. Prakash, “Yeast DNA polymerase η makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5113–5118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Boiteux and J. Laval, “Coding properties of poly(deoxycytidylic acid) templates containing uracil or apyrimidinic sites: in vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes,” Biochemistry, vol. 21, no. 26, pp. 6746–6751, 1982. View at Scopus
  44. R. M. Schaaper, T. A. Kunkel, and L. A. Loeb, “Infidelity of DNA synthesis associated with bypass of apurinic sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 2, pp. 487–491, 1983. View at Scopus
  45. B. S. Strauss, “The “A” rule revisited: polymerases as determinants of mutational specificity,” DNA Repair, vol. 1, no. 2, pp. 125–135, 2002. View at Publisher · View at Google Scholar · View at Scopus