About this Journal Submit a Manuscript Table of Contents
Journal of Nucleic Acids
Volume 2011 (2011), Article ID 371517, 17 pages
http://dx.doi.org/10.4061/2011/371517
Research Article

A Genomic Approach to Study Anthocyanin Synthesis and Flower Pigmentation in Passionflowers

Departamento de Biologia Vegetal. Rua Monteiro Lobato 970, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, 13083-970 Campinas, SP, Brazil

Received 14 January 2011; Accepted 1 March 2011

Academic Editor: Francisco Cruz-Sosa

Copyright © 2011 Lilian Cristina Baldon Aizza and Marcelo Carnier Dornelas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. B. Harborne, The Flavonoids: Advances in Research Since 1986, Chapman & Hall/CRC, New York, NY, USA, 1st edition, 1994.
  2. E. Grotewold, “The genetics and biochemistry of floral pigments,” Annual Review of Plant Biology, vol. 57, pp. 761–780, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. M. D. Rausher, “Evolutionary transitions in floral color,” International Journal of Plant Sciences, vol. 169, no. 1, pp. 7–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Quattrocchio, J. Wing, K. van der Woude et al., “Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color,” Plant Cell, vol. 11, no. 8, pp. 1433–1444, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Spelt, F. Quattrocchio, J. N. M. Mol, and R. Koes, “Anthocyanin1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes,” Plant Cell, vol. 12, no. 9, pp. 1619–1631, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Heller, G. Forkmann, L. Britsch, and H. Grisebach, “Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis,” Planta, vol. 165, no. 2, pp. 284–287, 1985. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Stich, T. Eidenberger, F. Wurst, and G. Forkmann, “Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation),” Planta, vol. 187, no. 1, pp. 103–108, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Davies, J. M. Bradley, K. E. Schwinn, K. R. Markham, and E. Podivinsky, “Flavonoid biosynthesis in flower petals of five lines of lisianthus (Eustoma grandiflorum Grise.),” Plant Science, vol. 95, no. 1, pp. 67–77, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Helariutta, P. Elomaa, M. Kotilainen, P. Seppänen, and T. H. Teeri, “Cloning of cDNA coding for dihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerbera hybrida var. Regina (Compositae),” Plant Molecular Biology, vol. 22, no. 2, pp. 183–193, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Grotewold, B. J. Drummond, B. Bowen, and T. Peterson, “The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset,” Cell, vol. 76, no. 3, pp. 543–553, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Hernandez, G. F. Heine, N. G. Irani et al., “Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1,” The Journal of Biological Chemistry, vol. 279, no. 46, pp. 48205–48213, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. Schwinn, J. Venail, Y. Shang et al., “A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the Genus antirrhinum,” Plant Cell, vol. 18, no. 4, pp. 831–851, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. Y. Morita, M. Saitoh, A. Hoshino, E. Nitasaka, and S. Iida, “Isolation of cDNAs for R2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutations conferring white flowers in the Japanese morning glory,” Plant and Cell Physiology, vol. 47, no. 4, pp. 457–470, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. K. I. Park, N. Ishikawa, Y. Morita, J. D. Choi, A. Hoshino, and S. Iida, “A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation,” Plant Journal, vol. 49, no. 4, pp. 641–654, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. T. A. Holton and E. C. Cornish, “Genetics and biochemistry of anthocyanin biosynthesis,” Plant Cell, vol. 7, no. 7, pp. 1071–1083, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. R. Koes, W. Verweij, and F. Quattrocchio, “Flavonoids: a colorful model for the regulation and evolution of biochemical pathways,” Trends in Plant Science, vol. 10, no. 5, pp. 236–242, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. Davies, “Plant pigments and their manipulation,” Annual Plant Reviews, vol. 14, p. 368, 2004.
  18. H. S. Lee and V. Hong, “Chromatographic analysis of anthocyanins,” Journal of Chromatography, vol. 624, no. 1-2, pp. 221–234, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. J. B. Harborne, T. J. Mabry, and H. Mabry, The Flavonoids, Academic Press, New York, NY, USA, 1975.
  20. J. Mol, E. Grofewold, and R. Koes, “How genes paint flowers and seeds,” Trends in Plant Science, vol. 3, no. 6, pp. 212–217, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Winkel-Shirley, “Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology,” Plant Physiology, vol. 126, no. 2, pp. 485–493, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. N. A. Ramsay and B. J. Glover, “MYB-bHLH-WD40 protein complex and the evolution of cellular diversity,” Trends in Plant Science, vol. 10, no. 2, pp. 63–70, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. L. Lepiniec, I. Debeaujon, J. M. Routaboul et al., “Genetics and biochemistry of seed flavonoids,” Annual Review of Plant Biology, vol. 57, pp. 405–430, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. T. Ulmer and J. M. MacDougal, Passiflora, Passion Flowers of the World, Timber Press, Cambridge, UK, 2004.
  25. M. M. Halim and R. P. Collins, “Anthocyanins of Passiflora quadrangularis,” Bulletin of the Torrey Botanical Club, vol. 97, no. 5, pp. 247–248, 1970.
  26. L. KidØy, A. M. Nygård, Ø. M. Andersen, A. T. Pedersen, D. W. Aksnes, and B. T. Kiremire, “Anthocyanins in fruits of Passiflora edulis and P. suberosa,” Journal of Food Composition and Analysis, vol. 10, no. 1, pp. 49–54, 1997. View at Scopus
  27. M. C. Dornelas, S. M. Tsai, and A. P. M. Rodriguez, “Expressed sequence tags of genes involved in the flowering process of Passiflora spp.,” in Floriculture, Ornamental and Plant Biotechnology, J. A. Teixeira da Silva, Ed., pp. 483–488, Global Science Books, London, UK, 2006.
  28. I. G. Varassin, J. R. Trigo, and M. Sazima, “The role of nectar production, flower pigments and odour in the pollination of four species of Passiflora (Passifloraceae) in south-eastern Brazil,” Botanical Journal of the Linnean Society, vol. 136, no. 2, pp. 139–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. T. Nakatsuka, Y. Abe, Y. Kakizaki, S. Yamamura, and M. Nishihara, “Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes,” Plant Cell Reports, vol. 26, no. 11, pp. 1951–1959, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Hanumappa, G. Choi, S. Ryu, and G. Choi, “Modulation of flower colour by rationally designed dominant-negative chalcone synthase,” Journal of Experimental Botany, vol. 58, no. 10, pp. 2471–2478, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Martens, A. Preuß, and U. Matern, “Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L,” Phytochemistry, vol. 71, no. 10, pp. 1040–1049, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. X. Huang and A. Madan, “CAP3: a DNA sequence assembly program,” Genome Research, vol. 9, no. 9, pp. 868–877, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, no. 41, pp. 95–98, 1999.
  35. S. Hunter, R. Apweiler, T. K. Attwood et al., “InterPro: the integrative protein signature database,” Nucleic Acids Research, vol. 37, no. 1, pp. D211–D215, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins, “The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools,” Nucleic Acids Research, vol. 25, no. 24, pp. 4876–4882, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Kumar, K. Tamura, and M. Nei, “MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment,” Briefings in Bioinformatics, vol. 5, no. 2, pp. 150–163, 2004. View at Scopus
  38. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Scopus
  39. M. J. Moore, P. S. Soltis, C. D. Bell, J. G. Burleigh, and D. E. Soltis, “Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 10, pp. 4623–4628, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. Ageez, Y. Kazama, R. Sugiyama, and S. Kawano, “Male-fertility genes expressed in male flower buds of Silene latifolia include homologs of anther-specific genes,” Genes and Genetic Systems, vol. 80, no. 6, pp. 403–413, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Jiang, C. K. Schommer, S. Y. Kim, and D. Y. Suh, “Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens,” Phytochemistry, vol. 67, no. 23, pp. 2531–2540, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Beld, C. Martin, H. Huits, A. R. Stuitje, and A. G. M. Gerats, “Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes,” Plant Molecular Biology, vol. 13, no. 5, pp. 491–502, 1989. View at Publisher · View at Google Scholar · View at Scopus
  43. E. T. Johnson, S. Ryu, H. Yi, B. Shin, H. Cheong, and G. Choi, “Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase,” Plant Journal, vol. 25, no. 3, pp. 325–333, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Shimada, R. Sasaki, S. Sato et al., “A comprehensive analysis of six dihydroflavonol 4-reductases encoded by a gene cluster of the Lotus japonicus genome,” Journal of Experimental Botany, vol. 56, no. 419, pp. 2573–2585, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. N. Kovinich, A. Saleem, J. T. Arnason, and B. Miki, “Functional characterization of a UDP-glucose:flavonoid 3-O- glucosyltransferase from the seed coat of black soybean (Glycine max (L.) Merr.),” Phytochemistry, vol. 71, no. 11-12, pp. 1253–1263, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. D. P. Dixon, A. Lapthorn, and R. Edwards, “Plant glutathione transferases,” Genome Biology, vol. 3, no. 3, pp. 1–10, 2002. View at Scopus
  47. Y. Borovsky, M. Oren-Shamir, R. Ovadia, W. De Jong, and I. Paran, “The A locus that controls anthocyanin accumulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia,” Theoretical and Applied Genetics, vol. 109, no. 1, pp. 23–29, 2004. View at Publisher · View at Google Scholar · View at PubMed
  48. I. M. Zimmermann, M. A. Heim, B. Weisshaar, and J. F. Uhrig, “Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins,” Plant Journal, vol. 40, no. 1, pp. 22–34, 2004. View at Publisher · View at Google Scholar · View at PubMed
  49. E. Grotewold, M. B. Sainz, L. Tagliani, J. M. Hernandez, B. Bowen, and V. L. Chandler, “Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13579–13584, 2000. View at Publisher · View at Google Scholar · View at PubMed
  50. F. Quattrocchio, W. Verweij, A. Kroon, C. Spelt, J. Mol, and R. Koes, “PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway,” Plant Cell, vol. 18, no. 5, pp. 1274–1291, 2006. View at Publisher · View at Google Scholar · View at PubMed
  51. L. Deluc, J. Bogs, A. R. Walker et al., “The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries,” Plant Physiology, vol. 147, no. 4, pp. 2041–2053, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. N. Funa, H. Ozawa, A. Hirata, and S. Horinouchi, “Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6356–6361, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. N. Funa, T. Awakawa, and S. Horinouchi, “Pentaketide resorcylic acid synthesis by type III polyketide synthase from Neurospora crassa,” The Journal of Biological Chemistry, vol. 282, no. 19, pp. 14476–14481, 2007. View at Publisher · View at Google Scholar · View at PubMed
  54. M. L. Durbin, B. McCaig, and M. T. Clegg, “Molecular evolution of the chalcone synthase multigene family in the morning glory genome,” Plant Molecular Biology, vol. 42, no. 1, pp. 79–92, 2000. View at Publisher · View at Google Scholar
  55. P. K. H. Koduri, G. S. Gordon, E. I. Barker, C. C. Colpitts, N. W. Ashton, and D. Y. Suh, “Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens,” Plant Molecular Biology, vol. 72, no. 3, pp. 247–263, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. S. Wu, S. J. B. O'Leary, S. Gleddie, F. Eudes, A. Laroche, and L. S. Robert, “A chalcone synthase-like gene is highly expressed in the tapetum of both wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack),” Plant Cell Reports, vol. 27, no. 9, pp. 1441–1449, 2008. View at Publisher · View at Google Scholar · View at PubMed
  57. R. E. Koes, C. E. Spelt, P. J. M. van den Elzen, and J. N. M. Mol, “Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida,” Gene, vol. 81, no. 2, pp. 245–257, 1989.
  58. C. Jiang, S. Y. Kim, and D. Y. Suh, “Divergent evolution of the thiolase superfamily and chalcone synthase family,” Molecular Phylogenetics and Evolution, vol. 49, no. 3, pp. 691–701, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. G. Forkmann and B. Ruhnau, “Distinct substrate specificity of dihydroflavonol-4-reductase from flowers of Petunia hybrida,” Zeitschrift für Naturforschung—Section C: Biosciences, vol. 42, pp. 1146–1148, 1987.
  60. S. Rudd, “Expressed sequence tags: alternative or complement to whole genome sequences?” Trends in Plant Science, vol. 8, no. 7, pp. 321–329, 2003. View at Publisher · View at Google Scholar
  61. J. Ogata, Y. Itoh, M. Ishida, H. Yoshida, and Y. Ozeki, “Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus,” Plant Biotechnology, vol. 21, no. 5, pp. 367–375, 2004.
  62. J. Isayenkova, V. Wray, M. Nimtz, D. Strack, and T. Vogt, “Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris,” Phytochemistry, vol. 67, no. 15, pp. 1598–1612, 2006. View at Publisher · View at Google Scholar · View at PubMed
  63. M. R. Alfenito, E. Souer, C. D. Goodman et al., “Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases,” Plant Cell, vol. 10, no. 7, pp. 1135–1149, 1998. View at Publisher · View at Google Scholar
  64. K. A. Marrs, M. R. Alfenito, A. M. Lloyd, and V. Walbot, “A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2,” Nature, vol. 375, no. 6530, pp. 397–400, 1995.
  65. S. Kitamura, N. Shikazono, and A. Tanaka, “TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis,” Plant Journal, vol. 37, no. 1, pp. 104–114, 2004. View at Publisher · View at Google Scholar
  66. L. Loyall, K. Uchida, S. Braun, M. Furuya, and H. Frohnmeyer, “Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures,” Plant Cell, vol. 12, no. 10, pp. 1939–1950, 2000. View at Publisher · View at Google Scholar
  67. R. C. Meyer, P. B. Goldsbrough, and W. R. Woodson, “An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione s-transferases,” Plant Molecular Biology, vol. 17, no. 2, pp. 277–281, 1991. View at Publisher · View at Google Scholar
  68. H. Itzhaki, J. M. Maxson, and W. R. Woodson, “An ethylene-responsive enhancer element is involved in the senescence- related expression of the carnation glutathione-S-transferase (GST1) gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 8925–8929, 1994. View at Publisher · View at Google Scholar
  69. P. Elomaa, A. Uimari, M. Mehto, V. A. Albert, R. A. E. Laitinen, and T. H. Teeri, “Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots,” Plant Physiology, vol. 133, no. 4, pp. 1831–1842, 2003. View at Publisher · View at Google Scholar · View at PubMed
  70. H. Mathews, S. K. Clendennen, C. G. Caldwell et al., “Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport,” Plant Cell, vol. 15, no. 8, pp. 1689–1703, 2003. View at Publisher · View at Google Scholar
  71. R. Stracke, M. Werber, and B. Weisshaar, “The R2R3-MYB gene family in Arabidopsis thaliana,” Current Opinion in Plant Biology, vol. 4, no. 5, pp. 447–456, 2001. View at Publisher · View at Google Scholar
  72. K. Lin-Wang, K. Bolitho, and K. Grafton, “An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae,” BMC Plant Biology, vol. 10, no. 1, pp. 50–67, 2010.
  73. M. Yamagishi, Y. Shimoyamada, T. Nakatsuka, and K. Masuda, “Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid Lily,” Plant and Cell Physiology, vol. 51, no. 3, pp. 463–474, 2010. View at Publisher · View at Google Scholar · View at PubMed
  74. C. Jiang, X. Gu, and T. Peterson, “Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica,” Genome Biology, vol. 5, no. 7, p. R46, 2004.
  75. S. Kobayashi, M. Ishimaru, K. Hiraoka, and C. Honda, “Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis,” Planta, vol. 215, no. 6, pp. 924–933, 2002. View at Publisher · View at Google Scholar · View at PubMed
  76. A. R. Walker, E. Lee, J. Bogs, D. A. J. McDavid, M. R. Thomas, and S. P. Robinson, “White grapes arose through the mutation of two similar and adjacent regulatory genes,” Plant Journal, vol. 49, no. 5, pp. 772–785, 2007. View at Publisher · View at Google Scholar · View at PubMed
  77. A. Gonzalez, M. Zhao, J. M. Leavitt, and A. M. Lloyd, “Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings,” Plant Journal, vol. 53, no. 5, pp. 814–827, 2008. View at Publisher · View at Google Scholar · View at PubMed
  78. N. de Vetten, F. Quattrocchio, J. Mol, and R. Koes, “The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals,” Genes and Development, vol. 11, no. 11, pp. 1422–1434, 1997.
  79. J. Brueggemann, B. Weisshaar, and M. Sagasser, “A WD40-repeat gene from Malus × domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1,” Plant Cell Reports, vol. 29, no. 3, pp. 285–294, 2010. View at Publisher · View at Google Scholar · View at PubMed