About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2011 (2011), Article ID 527437, 10 pages
http://dx.doi.org/10.1155/2011/527437
Research Article

Application of Flow Focusing to the Break-Up of a Magnetite Suspension Jet for the Production of Paramagnetic Microparticles

1Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
2R&D Department, Ingeniatrics Tecnologías S.L., 41900 Camas (Seville), Spain
3Centro Andaluz de Biología Molecular y Medicina Regenerativa, CABIMER-CSIC, 41092 Seville, Spain
4Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain
5Department of Aerospace Engineering and Fluids Mechanics, ESI, University of Seville, 41092 Seville, Spain

Received 31 May 2010; Accepted 25 July 2010

Academic Editor: Lu Sun

Copyright © 2011 Lucía Martín-Banderas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Paramagnetic particles offer an extensive improvement in the magnetic separation or purification of a wide variety of protein molecules. Most commercial paramagnetic particles are synthesized by laborious and costly procedures. A straightforward production of paramagnetic microparticles with homogeneous and selectable sizes using flow focusing (FF) technology is described in this work. The development of an initial formulation of a stable iron oxide suspension compatible with the FF requirements is also reported. The obtained particles, below 10 microns in diameter and presenting smooth and reactive surface, were codified with an organic fluorophore and showed excellent properties for covalent attachment of biomolecules such as proteins and its subsequent recognition by flow cytometry. Furthermore, particles with suitable magnetite content resulted as well-suited for commercial magnet separators for these purposes.