About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2011 (2011), Article ID 768201, 7 pages
http://dx.doi.org/10.1155/2011/768201
Research Article

Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

1Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
2Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
3Department of Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4Drug Design and Development Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
5Faculty of Medicine, Ahvaz Jundishapur University of Medical Science, P.O. Box 12244-9876, Ahvaz, Iran

Received 1 June 2010; Revised 5 July 2010; Accepted 1 August 2010

Academic Editor: Libo Wu

Copyright © 2011 Azade Taheri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC) to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 3 7 C ) and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC). Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate.