About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 129041, 8 pages
http://dx.doi.org/10.1155/2012/129041
Review Article

Semiconductor Quantum Dots Surface Modification for Potential Cancer Diagnostic and Therapeutic Applications

1College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
3Targeted Therapy Unit, Nordion Inc., 447 March Road, Ottawa, ON, Canada K2K 1X8

Received 4 September 2012; Accepted 20 September 2012

Academic Editor: Haiyan Li

Copyright © 2012 Jidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Hanash, C. S. Baik, and O. Kallioniemi, “Emerging molecular biomarkers-blood-based strategies to detect and monitor cancer,” Nature Reviews Clinical Oncology, vol. 8, no. 3, pp. 142–150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Ludwig and J. N. Weinstein, “Biomarkers in cancer staging, prognosis and treatment selection,” Nature Reviews Cancer, vol. 5, no. 11, pp. 845–856, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Alivisatos, W. Gu, and C. Larabell, “Quantum dots as cellular probes,” Annual Review of Biomedical Engineering, vol. 7, pp. 55–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Michalet, F. Pinaud, T. D. Lacoste, et al., “Properties of fluorescent semiconductor nanocrystals and their applications to biological labeling,” Single Molecules, vol. 2, no. 4, pp. 261–276, 2001.
  6. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Scopus
  8. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Mitchell, “Turning the spotlight on cellular imaging,” Nature Biotechnology, vol. 19, no. 11, pp. 1013–1017, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, “Luminescent quantum dots for multiplexed biological detection and imaging,” Current Opinion in Biotechnology, vol. 13, no. 1, pp. 40–46, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Michalet, F. F. Pinaud, L. A. Bentolila et al., “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science, vol. 307, no. 5709, pp. 538–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. Delehanty, H. Mattoussi, and I. L. Medintz, “Delivering quantum dots into cells: strategies, progress and remaining issues,” Analytical and Bioanalytical Chemistry, vol. 393, no. 4, pp. 1091–1105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Materials, vol. 4, no. 6, pp. 435–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Dubois, B. Mahler, B. Dubertret, E. Doris, and C. Mioskowski, “A versatile strategy for quantum dot ligand exchange,” Journal of the American Chemical Society, vol. 129, no. 3, pp. 482–483, 2007. View at Publisher · View at Google Scholar
  15. P. Alivisatos, “The use of nanocrystals in biological detection,” Nature Biotechnology, vol. 22, no. 1, pp. 47–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: recent progress and present challenges,” Advanced Materials, vol. 18, no. 15, pp. 1953–1964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Mulvaney, L. M. Liz-Marzán, M. Giersig, and T. Ung, “Silica encapsulation of quantum dots and metal clusters,” Journal of Materials Chemistry, vol. 10, no. 6, pp. 1259–1270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Yang and M. Gao, “Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method,” Advanced Materials, vol. 17, no. 19, pp. 2354–2357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Gerion, F. Pinaud, S. C. Williams et al., “Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots,” Journal of Physical Chemistry B, vol. 105, no. 37, pp. 8861–8871, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Parak, D. Gerion, T. Pellegrino et al., “Biological applications of colloidal nanocrystals,” Nanotechnology, vol. 14, no. 7, pp. R15–R27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Tamanoi, J. Lu, M. Liong, Z. Li, and J. I. Zink, “Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals,” Small, vol. 6, no. 16, pp. 1794–1805, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Chang, S. H. Wu, Y. S. Lin et al., “Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies,” ChemBioChem, vol. 9, no. 1, pp. 53–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Wang, J. Qian, F. Cai, S. He, S. Han, and Y. Mu, “‘Green’-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging,” Nanotechnology, vol. 23, no. 24, pp. 245701–245702, 2012.
  24. P. Pericleous, M. Gazouli, A. Lyberopoulou, S. Rizos, N. Nikiteas, and E. P. Efstathopoulos, “Quantum dots hold promise for early cancer imaging and detection,” International Journal of Cancer, vol. 131, no. 3, pp. 519–528, 2012.
  25. D. Richards and A. Ivanisevic, “Inorganic material coatings and their effect on cytotoxicity,” Chemical Society Reviews, vol. 41, no. 6, pp. 2052–2060, 2012.
  26. C. V. Durgadas, K. Sreenivasan, and C. P. Sharma, “Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility,” Biomaterials, vol. 33, no. 27, pp. 6420–6429, 2012.
  27. S. T. Selvanb, “Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (Mini-Review),” Biointerphases, vol. 5, no. 3, pp. FA110–FA115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ohmori and E. Matijević, “Preparation and properties of uniform coated inorganic colloidal particles. 8. Silica on iron,” Journal of Colloid And Interface Science, vol. 160, no. 2, pp. 288–292, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. L. M. Liz-Marzán and A. P. Philipse, “Synthesis and optical properties of gold-labeled silica particles,” Journal of Colloid And Interface Science, vol. 176, no. 2, pp. 459–466, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Guerrero-Martínez, J. Pérez-Juste, and L. M. Liz-Marzán, “Recent progress on silica coating of nanoparticles and related nanomaterials,” Advanced Materials, vol. 22, no. 11, pp. 1182–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Homogeneous silica coating of vitreophobic colloids,” Chemical Communications, no. 6, pp. 731–732, 1996. View at Scopus
  32. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir, vol. 12, no. 18, pp. 4329–4335, 1996. View at Scopus
  33. L. Chen, C. Chen, R. Li, Y. Li, and S. Liu, “CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker,” Chemical Communications, no. 19, pp. 2670–2672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. T. T. Tan, S. T. Selvan, L. Zhao, S. Gao, and J. Y. Ying, “Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots,” Chemistry of Materials, vol. 19, no. 13, pp. 3112–3117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Advanced Materials, vol. 17, no. 13, pp. 1620–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, and J. Y. Ying, “Silica-coated nanocomposites of magnetic nanoparticles and quantum dots,” Journal of the American Chemical Society, vol. 127, no. 14, pp. 4990–4991, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. S. T. Selvan, T. T. Y. Tan, D. K. Yi, and N. R. Jana, “Functional and multifunctional nanoparticles for bioimaging and biosensing,” Langmuir, vol. 26, no. 14, pp. 11631–11641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Pöselt, C. Schmidtke, S. Fischer, et al., “Tailor-made quantum dot and iron oxide based contrast agents for in vitro and in vivo tumor,” ACS Nano, vol. 6, no. 4, pp. 3346–3353, 2012.
  39. W. Liu, H. S. Choi, J. P. Zimmer, E. Tanaka, J. V. Frangioni, and M. Bawendi, “Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications,” Journal of the American Chemical Society, vol. 129, no. 47, pp. 14530–14531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. H. S. Choi, W. Liu, P. Misra et al., “Renal clearance of quantum dots,” Nature Biotechnology, vol. 25, no. 10, pp. 1165–1170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Tian, W. T. Al-Jamal, J. V. Bossche, and K. Kostarelos, “Design and engineering of multifunctional quantum dot-based nanoparticles for simultaneous therapeutic-diagnostic applications,” Nanostructure Science and Technology, part 4, pp. 345–365, 2012.
  42. S. B. Lowe, J. A. G. . Dick, B. E. Cohen, and M. M. Stevens, “Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates,” ACS Nano, vol. 6, no. 1, pp. 851–857, 2012.
  43. K. T. Yong, H. Ding, I. Roy et al., “Imaging pancreatic cancer using bioconjugated inp quantum dots,” ACS Nano, vol. 3, no. 3, pp. 502–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. H. S. Choi, B. I. Ipe, P. Misra, J. H. Lee, M. G. Bawendi, and J. V. Frangioni, “Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots,” Nano Letters, vol. 9, no. 6, pp. 2354–2359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Yu, L. Chen, Y. Deng et al., “Fluorescence analysis with quantum dot probes for hepatoma under one- and two-photon excitation,” Journal of Fluorescence, vol. 17, no. 2, pp. 243–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. D. K. Tiwari, S. I. Tanaka, Y. Inouye, K. Yoshizawa, T. M. Watanabe, and T. Jin, “Synthesis and characterization of anti-HER2 antibody conjugated CdSe/CdZnS quantum dots for fluorescence imaging of breast cancer cells,” Sensors, vol. 9, no. 11, pp. 9332–9354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Li, P. Huang, R. He, et al., “Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging,” Materials Letters, vol. 64, no. 3, pp. 375–378, 2010.
  48. D. A. Geraldo, E. F. Duran-Lara, D. Aguayo et al., “Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells,” Analytical and Bioanalytical Chemistry, vol. 400, no. 2, pp. 483–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Akin, R. Bongartz, J. G. Walter, et al., “PAMAM-functionalized water soluble quantum dots for cancer cell targeting,” Journal of Materials Chemistry, vol. 22, no. 23, pp. 11529–11536, 2012.
  50. T. Jin, F. Fujii, Y. Komai, J. Seki, A. Seiyama, and Y. Yoshioka, “Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging,” International Journal of Molecular Sciences, vol. 9, no. 10, pp. 2044–2061, 2008.
  51. M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nature Biotechnology, vol. 19, no. 7, pp. 631–635, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Wang, P. Zhang, H. Dou, et al., “Efficient incorporation of quantum dots into porous microspheres through a solvent-evaporation approach,” Langmuir, vol. 28, no. 14, pp. 6141–6150, 2012.
  53. D. Wang, A. L. Rogach, and F. Caruso, “Semiconductor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Letters, vol. 2, no. 8, pp. 857–861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Adamczaka, H. J. Hoelb, G. Gaudernackb, J. Barbasza, K. Szczepanowicza, and P. Warszyńskia, “Polyelectrolyte multilayer capsules with quantum dots for biomedical applications,” Colloids and Surfaces B, vol. 90, no. 1, pp. 211–216, 2012.
  55. Z. Zhelev, H. Ohba, and R. Bakalova, “Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers,” Journal of the American Chemical Society, vol. 128, no. 19, pp. 6324–6325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Zhang, Y. He, Z. Ruan, F. F. Chen, and J. Yang, “Fabrication of quantum dots-encoded microbeads with a simple capillary fluidic device and their application for biomolecule detection,” Journal of Colloid and Interface Science, vol. 385, no. 1, pp. 8–14, 2012.
  57. Q. Yang, Y. Li, T. Song, and J. Chang, “Facile single step preparation of high-performance quantum dot barcodes,” Journal of Materials Chemistry, vol. 22, no. 14, pp. 7043–7049, 2012.
  58. J. Lee, Y. Choi, K. Kim et al., “Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots,” Bioconjugate Chemistry, vol. 21, no. 5, pp. 940–946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Pellegrino, L. Manna, S. Kudera et al., “Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals,” Nano Letters, vol. 4, no. 4, pp. 703–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Travert-Branger, F. Dubois, O. Carion et al., “Oligomeric PEG-phospholipids for solubilization and stabilization of fluorescent nanocrystals in water,” Langmuir, vol. 24, no. 7, pp. 3016–3019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Liu, X. Yang, K. Wang, et al., “Single nanoparticle imaging and characterization of different phospholipid-encapsulated quantum dot micelles,” Langmuir, vol. 28, no. 28, pp. 10602–10609, 2012.
  62. N. Travert-Branger, F. Dubois, J. P. Renault et al., “In situ electron-beam polymerization stabilized quantum dot micelles,” Langmuir, vol. 27, no. 8, pp. 4358–4361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Hu, K. T. Yong, I. Roy, et al., “Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging,” Nanotechnology, vol. 21, no. 14, Article ID 145105, 2010.
  65. F. Erogbogbo, K. T. Yong, R. Hu et al., “Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide,” ACS Nano, vol. 4, no. 9, pp. 5131–5138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. D. P. Cormode, T. Skajaa, M. M. Van Schooneveld et al., “Nanocrystal core high-density lipoproteins: a multimodality contrast agent platform,” Nano Letters, vol. 8, no. 11, pp. 3715–3723, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nature Protocols, vol. 2, no. 10, pp. 2383–2390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Koole, M. M. Van Schooneveld, J. Hilhorst et al., “Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging,” Bioconjugate Chemistry, vol. 19, no. 12, pp. 2471–2479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. K. T. Yong, “Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging,” Pancreatology, vol. 10, no. 5, pp. 553–564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. T. Yong, I. Roy, W. C. Law, and R. Hu, “Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging,” Chemical Communications, vol. 46, no. 38, pp. 7136–7138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong interaction between a two-level atom and the whispering-gallery modes of a dielectric microsphere: quantum-mechanical consideration,” Physical Review A, vol. 59, no. 4, pp. 2996–3014, 1999.
  72. J. N. Cha, M. H. Bartl, M. S. Wong, A. Popitsch, T. J. Deming, and G. D. Stucky, “Microcavity lasing from block peptide hierarchically assembled quantum dot spherical resonators,” Nano Letters, vol. 3, no. 7, pp. 907–911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Fan, M. C. Lonergan, Y. Zhang, and H. Wang, “Enhanced spontaneous emission from semiconductor nanocrystals embedded in whispering gallery optical microcavities,” Physical Review B, vol. 64, no. 11, Article ID 115310, 5 pages, 2001. View at Scopus
  74. W. Sheng, S. Kim, J. Lee, S. W. Kim, K. Jensen, and M. G. Bawendi, “In-situ encapsulation of quantum dots into polymer microspheres,” Langmuir, vol. 22, no. 8, pp. 3782–3790, 2006. View at Publisher · View at Google Scholar · View at Scopus