About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 152489, 32 pages
http://dx.doi.org/10.1155/2012/152489
Review Article

Atomistic Modeling of Gas Adsorption in Nanocarbons

Department of Fundamental and Applied Science for Engineering-Physics Section, University of Rome “La Sapienza”, via A. Scarpa 14-16, 00161 Rome, Italy

Received 11 July 2012; Revised 27 September 2012; Accepted 28 September 2012

Academic Editor: Jinquan Wei

Copyright © 2012 G. Zollo and F. Gala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, “The U.S. Department of Energy's National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements,” Catalysis Today, vol. 120, no. 3-4, pp. 246–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Bekyarova, M. Davis, T. Burch et al., “Chemically functionalized single-walled carbon nanotubes as ammonia sensors,” Journal of Physical Chemistry B, vol. 108, no. 51, pp. 19717–19720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Suehiro, G. Zhou, and M. Hara, “Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy,” Journal of Physics D, vol. 36, no. 21, pp. L109–L114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. S. Lawrence, R. P. Deo, and J. Wang, “Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes,” Analytica Chimica Acta, vol. 517, no. 1-2, pp. 131–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. E. Froudakis, “Hydrogen interaction with carbon nanotubes: a review of ab initio studies,” Journal of Physics Condensed Matter, vol. 14, no. 17, pp. R453–R465, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. G. Narehood, J. V. Pearce, P. C. Eklund et al., “Diffusion of H2 adsorbed on single-walled carbon nanotubes,” Physical Review B, vol. 67, no. 20, Article ID 205409, 5 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Saito, G. Dressalhaus, and M. S. Dressalhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, UK, 1999.
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Cervantes-Sodi, G. Csányi, S. Piscanec, and A. C. Ferrari, “Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties,” Physical Review B, vol. 77, no. 16, Article ID 165427, 13 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, “Density functional study of adsorption of molecular hydrogen on graphene layers,” Journal of Chemical Physics, vol. 112, no. 18, pp. 8114–8119, 2000. View at Scopus
  12. M. H. F. Sluiter and Y. Kawazoe, “Cluster expansion method for adsorption: application to hydrogen chemisorption on graphene,” Physical Review B, vol. 68, no. 8, Article ID 085410, 7 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Cabria, M. J. López, and J. A. Alonso, “Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping,” Journal of Chemical Physics, vol. 123, no. 20, Article ID 204721, 9 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Sanyal, O. Eriksson, U. Jansson, and H. Grennberg, “Molecular adsorption in graphene with divacancy defects,” Physical Review B, vol. 79, Article ID 113409, 4 pages, 2009.
  15. T. O. Wehling, K. S. Novoselov, S. V. Morozov et al., “Molecular doping of graphene,” Nano Letters, vol. 8, no. 1, pp. 173–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Saffarzadeh, “Modeling of gas adsorption on graphene nanoribbons,” Journal of Applied Physics, vol. 107, no. 11, Article ID 114309, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. P. K. Ang, W. Chen, A. T. S. Wee, and P. L. Kian, “Solution-gated epitaxial graphene as pH sensor,” Journal of the American Chemical Society, vol. 130, no. 44, pp. 14392–14393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Wu, J. Wang, X. Kang et al., “Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film,” Talanta, vol. 80, no. 1, pp. 403–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Gatica, H. I. Li, R. A. Trasca, M. W. Cole, and R. D. Diehl, “Xe adsorption on a C60 monolayer on Ag(111),” Physical Review B, vol. 77, no. 4, Article ID 045414, 8 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. Trasca, M. W. Cole, T. Coffey, and J. Krim, “Gas adsorption on a C60 monolayer,” Physical Review E, vol. 77, no. 4, Article ID 041603, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Mowrey, M. M. Ross, and J. H. Callahan, “Molecular dynamics simulations and experimental studies of the formation of endohedral complexes of buckminsterfullerene,” Journal of Physical Chemistry, vol. 96, no. 12, pp. 4755–4761, 1992. View at Scopus
  22. M. Yoon, S. Yang, and Z. Zhang, “Interaction between hydrogen molecules and metallofullerenes,” Journal of Chemical Physics, vol. 131, no. 6, Article ID 064707, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. H. Kim, Y. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, “Nondissociative adsorption of H2 molecules in light-element-doped fullerenes,” Physical Review Letters, vol. 96, no. 1, Article ID 016102, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. R. S. Chandrakumar and S. K. Ghosh, “Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study,” Nano Letters, vol. 8, no. 1, pp. 13–19, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Sun, P. Jena, Q. Wang, and M. Marquez, “First-principles study of hydrogen storage on Li12C60,” Journal of the American Chemical Society, vol. 128, no. 30, pp. 9741–9745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Yoon, S. Yang, E. Wang, and Z. Zheng, “Charged fullerenes as high-capacity hydrogen storage media,” Nano Letters, vol. 7, no. 9, pp. 2578–2583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. W. H. Shin, S. H. Yang, W. A. Goddard, and J. K. Kang, “Ni-dispersed fullerenes: hydrogen storage and desorption properties,” Applied Physics Letters, vol. 88, no. 5, Article ID 053111, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Yildirim and S. Ciraci, “Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium,” Physical Review Letters, vol. 94, no. 17, Article ID 175501, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Yildirim, J. Íñiguez, and S. Ciraci, “Molecular and dissociative adsorption of multiple hydrogen molecules on transition metal decorated C60,” Physical Review B, vol. 72, no. 15, Article ID 153403, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, “Hydrogen storage in novel organometallic buckyballs,” Physical Review Letters, vol. 94, no. 15, Article ID 155504, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Naghshineh and M. Hashemianzadeh, “First-principles study of hydrogen storage on Si atoms decorated C60,” International Journal of Hydrogen Energy, vol. 34, no. 5, pp. 2319–2324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993. View at Scopus
  33. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  34. F. Darkrim and D. Levesque, “Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes,” Journal of Chemical Physics, vol. 109, no. 12, pp. 4981–4984, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Ma, Y. Xia, M. Zhao, R. Wang, and L. Mei, “Effective hydrogen storage in single-wall carbon nanotubes,” Physical Review B, vol. 63, no. 11, Article ID 115422, 6 pages, 2001. View at Scopus
  36. G. Stan and M. W. Cole, “Low coverage adsorption in cylindrical pores,” Surface Science, vol. 395, no. 2-3, pp. 280–291, 1998. View at Scopus
  37. Q. Wang, J. K. Johnson, and J. Q. Broughton, “Path integral grand canonical Monte Carlo,” Journal of Chemical Physics, vol. 107, no. 13, pp. 5108–5117, 1997. View at Scopus
  38. J. S. Arellano, L. M. Molina, A. Rubio, M. J. López, and J. A. Alonso, “Interaction of molecular and atomic hydrogen with (5,5) and (6,6) single-wall carbon nanotubes,” Journal of Chemical Physics, vol. 117, no. 5, pp. 2281–2288, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. C. W. Bauschlicher and C. R. So, “High Coverages of Hydrogen on (10,0), (9,0) and (5,5) Carbon Nanotubes,” Nano Letters, vol. 2, no. 4, pp. 337–341, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Lee and Y. H. Lee, “Hydrogen storage in single-walled carbon nanotubes,” Applied Physics Letters, vol. 76, no. 20, pp. 2877–2879, 2000. View at Scopus
  41. X. Zhang, D. Cao, and J. Chen, “Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory,” Journal of Physical Chemistry B, vol. 107, no. 21, pp. 4942–4950, 2003. View at Scopus
  42. G. Stan and M. W. Cole, “Hydrogen adsorption in nanotubes,” Journal of Low Temperature Physics, vol. 110, no. 1-2, pp. 539–544, 1998. View at Scopus
  43. L. Chen, Y. Zhang, N. Koratkar, P. Jena, and S. K. Nayak, “First-principles study of interaction of molecular hydrogen with Li-doped carbon nanotube peapod structures,” Physical Review B, vol. 77, no. 3, Article ID 033405, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. S. Yeung, L. V. Liu, and Y. A. Wang, “Adsorption of small gas molecules onto Pt-doped single-walled carbon nanotubes,” Journal of Physical Chemistry C, vol. 112, no. 19, pp. 7401–7411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Xiao, S. H. Li, and J. X. Cao, “First-principles study of Pd-decorated carbon nanotube for hydrogen storage,” Chemical Physics Letters, vol. 483, no. 1–3, pp. 111–114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. G. Albesa, E. A. Fertitta, and J. L. Vicente, “Comparative study of methane adsorption on single-walled carbon nanotubes,” Langmuir, vol. 26, no. 2, pp. 786–795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. M. Calbi, S. M. Gatica, M. J. Bojan, and M. W. Cole, “Phases of neon, xenon, and methane adsorbed on nanotube bundles,” Journal of Chemical Physics, vol. 115, no. 21, pp. 9975–9981, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Zhao, A. Buldum, J. Han, and J. P. Lu, “Gas molecule adsorption in carbon nanotubes and nanotube bundles,” Nanotechnology, vol. 13, no. 2, pp. 195–200, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Li, Y. Xia, M. Zhao et al., “Selectable functionalization of single-walled carbon nanotubes resulting from CHn (n=13) adsorption,” Physical Review B, vol. 69, no. 16, Article ID 165415, 6 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Tournus and J. C. Charlier, “Ab initio study of benzene adsorption on carbon nanotubes,” Physical Review B, vol. 71, no. 16, Article ID 165421, 8 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. F. Tournus, S. Latil, M. I. Heggie, and J. C. Charlier, “π-stacking interaction between carbon nanotubes and organic molecules,” Physical Review B, vol. 72, no. 7, Article ID 075431, 5 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Bagolini, F. Gala, and G. Zollo, “Methane cracking on single-wall carbon nanotubes studied by semi-empirical tight binding simulations,” Carbon, vol. 50, no. 2, pp. 411–420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. L. B. Da Silva, S. B. Fagan, and R. Mota, “Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules,” Nano Letters, vol. 4, no. 1, pp. 65–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Peng and K. Cho, “Ab initio study of doped carbon nanotube sensors,” Nano Letters, vol. 3, no. 4, pp. 513–517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. J. M. Garcìa-Lastra, D. J. Mowbray, K. S. Thygesen, A. Rubio, and K. W. Jacobsen, “Modeling nanoscale gas sensors under realistic conditions: computational screening of metal-doped carbon nanotubes,” Physical Review B, vol. 81, no. 24, Article ID 245429, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Garcìa-Lastra, K. S. Thygesen, M. Strange, and A. Rubio, “Conductance of sidewall-functionalized carbon nanotubes: universal dependence on adsorption sites,” Physical Review Letters, vol. 101, no. 23, Article ID 236806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Jiang and S. I. Sandler, “Nitrogen adsorption on carbon nanotube bundles: role of the external surface,” Physical Review B, vol. 68, no. 24, Article ID 245412, 9 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Stan, M. J. Bojan, S. Curtarolo, S. M. Gatica, and M. W. Cole, “Uptake of gases in bundles of carbon nanotubes,” Physical Review B, vol. 62, no. 3, pp. 2173–2180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Fernandez-Alonso, F. J. Bermejo, C. Cabrillo, R. O. Loutfy, V. Leon, and M. L. Saboungi, “Nature of the bound states of molecular hydrogen in carbon nanohorns,” Physical Review Letters, vol. 98, no. 21, Article ID 215503, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Tanaka, H. Kanoh, M. El-Merraoui et al., “Quantum effects on hydrogen adsorption in internal nanospaces of single-wall carbon nanohorns,” Journal of Physical Chemistry B, vol. 108, no. 45, pp. 17457–17465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. B. Burteaux, A. Claye, B. W. Smith, M. Monthioux, D. E. Luzzi, and J. E. Fischer, “Abundance of encapsulated C60 in single-wall carbon nanotubes,” Chemical Physics Letters, vol. 310, no. 1-2, pp. 21–24, 1999. View at Scopus
  62. A. V. Vakhrushev and M. V. Suetin, “Carbon nanocontainers for gas storage,” Nanotechnologies in Russia, vol. 4, no. 11-12, pp. 806–815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. J. Cramer, Essential of Computational Chemistry, John Wiley & Sons, West Sussex, UK, 2004.
  64. D. Young, Computational Chemistry, John Wiley & Sons, New York, NY, USA, 2001.
  65. R. O. Jones and O. Gunnarsson, “The density functional formalism, its applications and prospects,” Reviews of Modern Physics, vol. 61, no. 3, pp. 689–746, 1989. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Engel and R. M. Dreizler, Density Functional Theory—An Advanced Course, Springer, Heidelberg, Germany, 2011.
  67. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. View at Scopus
  68. D. Frenkel, Understanding Molecular Simulations, Computational Science Series, Academic Press, San Diego, Calif, USA, 2002.
  69. R. Evans, “The nature of the liquid-vapor interface and other topics in the statistical mechanics of non-uniform, classical fluids,” Advances in Physics, vol. 28, no. 2, pp. 143–200, 1979. View at Scopus
  70. N. D. Mermin, “Thermal properties of the inhomogeneous electron gas,” Physical Review, vol. 137, no. 5, pp. A1441–A1443, 1965. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Tarazona, “Free-energy density functional for hard spheres,” Physical Review A, vol. 31, no. 4, pp. 2672–2679, 1985. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Tarazona, U. Marini Bettolo Marconi, and R. Evans, “Phase equilibria of fluid interfaces and confined fluids,” Molecular Physics, vol. 60, pp. 573–589, 1987.
  73. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  74. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  75. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Reviews of Modern Physics, vol. 64, no. 4, pp. 1045–1097, 1992. View at Publisher · View at Google Scholar · View at Scopus
  76. U. Von Barth, “Basic density-functional theory—an overview,” Physica Scripta T, vol. T109, pp. 9–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Non-Linear Equations, Prentice Hall, Englewood Cliffs, NJ, USA, 1983.
  78. G. B. Bachelet, D. R. Hamann, and M. Schlüter, “Pseudopotentials that work: from H to Pu,” Physical Review B, vol. 26, no. 8, pp. 4199–4228, 1982. View at Publisher · View at Google Scholar · View at Scopus
  79. D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Physical Review Letters, vol. 43, no. 20, pp. 1494–1497, 1979. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calculations,” Physical Review B, vol. 43, no. 3, pp. 1993–2006, 1991. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, no. 11, pp. 7892–7895, 1990. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Vanderbilt, “Optimally smooth norm-conserving pseudopotentials,” Physical Review B, vol. 32, no. 12, pp. 8412–8415, 1985. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Kleinman and D. M. Bylander, “Efficacious form for model pseudopotentials,” Physical Review Letters, vol. 48, no. 20, pp. 1425–1428, 1982. View at Publisher · View at Google Scholar · View at Scopus
  84. A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” The Journal of Chemical Physics, vol. 98, no. 7, pp. 5648–5652, 1993. View at Scopus
  85. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at Scopus
  86. J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Physical Review B, vol. 23, no. 10, pp. 5048–5079, 1981. View at Publisher · View at Google Scholar · View at Scopus
  87. D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,” Physical Review Letters, vol. 45, no. 7, pp. 566–569, 1980. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Okamoto and Y. Miyamoto, “Ab initio investigation of physisorption of molecular hydrogen on planar and curved graphenes,” Journal of Physical Chemistry B, vol. 105, no. 17, pp. 3470–3474, 2001. View at Scopus
  89. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia, Pa, USA, 1976.
  90. F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, New York, NY, USA, 2nd edition, 2007.
  91. M. Marder, Condensed Matter Physics, John Wiley & Sons, New York, NY, USA, 2000.
  92. T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic Theory, John Wiley & Sons, New York, NY, USA, 2002.
  93. R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum chemistry,” Reviews of Modern Physics, vol. 79, no. 1, pp. 291–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Stan, V. H. Crespi, M. W. Cole, and M. Boninsegni, “Interstitial He and Ne in nanotube bundles,” Journal of Low Temperature Physics, vol. 113, no. 3-4, pp. 447–452, 1998. View at Scopus
  95. D. M. Ceperley, “Path integrals in the theory of condensed helium,” Reviews of Modern Physics, vol. 67, no. 2, pp. 279–355, 1995. View at Publisher · View at Google Scholar · View at Scopus
  96. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York , NY, USA.
  97. J. K. Percus and G. J. Yevick, “Analysis of classical statistical mechanics by means of collective coordinates,” Physical Review, vol. 110, no. 1, pp. 1–13, 1958. View at Publisher · View at Google Scholar · View at Scopus
  98. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes,” Nature, vol. 386, no. 6623, pp. 377–379, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. V. Meregalli and M. Parrinello, “Review of theoretical calculations of hydrogen storage in carbon-based materials,” Applied Physics A, vol. 72, no. 2, pp. 143–146, 2001. View at Scopus
  100. G. E. Ioannatos and X. E. Verykios, “H2 storage on single- and multi-walled carbon nanotubes,” International Journal of Hydrogen Energy, vol. 35, no. 2, pp. 622–628, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. K. L. Lim, H. Kazemian, Z. Yaakob, and W. R. W. Daud, “Solid-state materials and methods for hydrogen storage: a critical review,” Chemical Engineering and Technology, vol. 33, no. 2, pp. 213–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Liu, Y. Chen, C. Z. Wu, S. T. Xu, and H. M. Cheng, “Hydrogen storage in carbon nanotubes revisited,” Carbon, vol. 48, no. 2, pp. 452–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. K. A. Williams and P. C. Eklund, “Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes,” Chemical Physics Letters, vol. 320, no. 3-4, pp. 352–358, 2000. View at Scopus
  104. I. F. Silvera and V. V. Goldman, “The isotropic intermolecular potential for H2 and D2 in the solid and gas phases,” The Journal of Chemical Physics, vol. 69, no. 9, pp. 4209–4213, 1978. View at Scopus
  105. A. D. Crowell and J. S. Brown, “Laterally averaged interaction potentials for 1H2 and 2H2 on the (0001) graphite surface,” Surface Science, vol. 123, no. 2-3, pp. 296–304, 1982. View at Scopus
  106. H. Dodziuk and G. Dolgonos, “Molecular modeling study of hydrogen storage in carbon nanotubes,” Chemical Physics Letters, vol. 356, no. 1-2, pp. 79–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, “Hydrogen storage in graphite nanofibers,” Journal of Physical Chemistry B, vol. 102, no. 22, pp. 4253–4256, 1998. View at Scopus
  108. M. Volpe and F. Cleri, “Role of surface chemistry in hydrogen adsorption in single-wall carbon nanotubes,” Chemical Physics Letters, vol. 371, no. 3-4, pp. 476–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. S. K. Bhatia and A. L. Myers, “Optimum conditions for adsorptive storage,” Langmuir, vol. 22, no. 4, pp. 1688–1700, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Guan, X. Pan, X. Liu, and X. Bao, “Syngas segregation induced by confinement in carbon nanotubes: a combined first-principles and Monte Carlo study,” Journal of Physical Chemistry C, vol. 113, no. 52, pp. 21687–21692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Dag, Y. Ozturk, S. Ciraci, and T. Yildirim, “Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes,” Physical Review B, vol. 72, no. 15, Article ID 155404, 8 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. T. A. Halgren, “Representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters,” Journal of the American Chemical Society, vol. 114, no. 20, pp. 7827–7843, 1992. View at Scopus
  113. B. Kuchta, L. Firlej, P. Pfeifer, and C. Wexler, “Numerical estimation of hydrogen storage limits in carbon-based nanospaces,” Carbon, vol. 48, no. 1, pp. 223–231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Cheng, X. Yuan, X. Fang, and L. Zhang, “Computer simulation of hydrogen physisorption in a Li-doped single walled carbon nanotube array,” Carbon, vol. 48, no. 2, pp. 567–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, “Calcium-decorated carbon nanotubes for high-capacity hydrogen storage: first-principles calculations,” Physical Review B, vol. 80, no. 11, Article ID 115412, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Touzik and H. Hermann, “Theoretical study of hydrogen adsorption on graphitic materials,” Chemical Physics Letters, vol. 416, no. 1–3, pp. 137–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. W. A. Steele and M. J. Bojan, “Simulation studies of sorption in model cylindrical micropores,” Advances in Colloid and Interface Science, vol. 76-77, pp. 153–178, 1998. View at Scopus
  118. L. Zhan, K. Li, X. Zhu, C. Lv, and L. Ling, “Adsorption limit of supercritical hydrogen on super-activated carbon,” Carbon, vol. 40, no. 3, pp. 455–457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Georgakis, G. Stavropoulos, and G. P. Sakellaropoulos, “Molecular dynamics study of hydrogen adsorption in carbonaceous microporous materials and the effect of oxygen functional groups,” International Journal of Hydrogen Energy, vol. 32, no. 12, pp. 1999–2004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. T. X. Nguyen, N. Cohaut, J. S. Bae, and S. K. Bhatia, “New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation,” Langmuir, vol. 24, no. 15, pp. 7912–7922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. G. Opletal, T. Petersen, B. O'Malley et al., “Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo,” Molecular Simulation, vol. 28, no. 10-11, pp. 927–938, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. N. Marks, “Modelling diamond-like carbon with the environment-dependent interaction potential,” Journal of Physics Condensed Matter, vol. 14, no. 11, pp. 2901–2927, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” Journal of Physics Condensed Matter, vol. 14, no. 4, pp. 783–802, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. L. M. Sesè, “Feynman-Hibbs potentials and path integrals for quantum Lennard-Jones systems: theory and Monte Carlo simulations,” Molecular Physics, vol. 85, pp. 931–947, 1995.
  125. T. X. Nguyen, J. S. Bae, Y. Wang, and S. K. Bhatia, “On the strength of the hydrogen-carbon interaction as deduced from physisorption,” Langmuir, vol. 25, no. 8, pp. 4314–4319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. D. Levesque, A. Gicquel, F. L. Darkrim, and S. B. Kayiran, “Monte Carlo simulations of hydrogen storage in carbon nanotubes,” Journal of Physics Condensed Matter, vol. 14, no. 40, pp. 9285–9293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. S. J. V. Frankland and D. W. Brenner, “Hydrogen Raman shifts in carbon nanotubes from molecular dynamics simulation,” Chemical Physics Letters, vol. 334, no. 1–3, pp. 18–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  128. S. C. Wang, L. Senbetu, and C. W. Woo, “Superlattice of parahydrogen physisorbed on graphite surface,” Journal of Low Temperature Physics, vol. 41, no. 5-6, pp. 611–628, 1980. View at Publisher · View at Google Scholar · View at Scopus
  129. W. A. Steele, The Interaction of Gases with Solid Surfaces, Pergamon Press, New York, N Y, USA, 1974.
  130. H. Miyaoka, T. Ichikawa, and Y. Kojima, “The reaction process of hydrogen absorption and desorption on the nanocomposite of hydrogenated graphite and lithium hydride,” Nanotechnology, vol. 20, no. 20, Article ID 204021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. P. Guay, B. L. Stansfield, and A. Rochefort, “On the control of carbon nanostructures for hydrogen storage applications,” Carbon, vol. 42, no. 11, pp. 2187–2193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. D. J. Browning, M. L. Gerrard, J. B. Lakeman, I. M. Mellor, R. J. Mortimer, and M. C. Turpin, “Studies into the storage of hydrogen in carbon nanofibers: proposal of a possible reaction mechanism,” Nano Letters, vol. 2, no. 3, pp. 201–205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  133. O. N. Srivastava and B. K. Gupta, “Further studies on microstructural characterization and hydrogenation behaviour of graphitic nanofibres,” International Journal of Hydrogen Energy, vol. 26, no. 8, pp. 857–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. Z. H. Zhu, G. Q. Lu, and S. C. Smith, “Comparative study of hydrogen storage in Li- and K-doped carbon materials—theoretically revisited,” Carbon, vol. 42, no. 12-13, pp. 2509–2514, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie, “Calcium-decorated graphene-based nanostructures for hydrogen storage,” Nano Letters, vol. 10, no. 3, pp. 793–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  136. H. An, C. S. Liu, Z. Zeng, C. Fan, and X. Ju, “Li-doped B2 C graphene as potential hydrogen storage medium,” Applied Physics Letters, vol. 98, no. 17, Article ID 173101, 3 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. M. Andersen, L. Hornekær, and B. Hammer, “Graphene on metal surfaces and its hydrogen adsorption: a meta-GGA functional study,” Physical Review B, vol. 86, no. 8, Article ID 085405, 6 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Sigal, M. I. Rojas, and E. P. M. Leiva, “Is hydrogen storage possible in metal-doped graphite 2D systems in conditions found on earth?” Physical Review Letters, vol. 107, no. 15, Article ID 158701, 4 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. G. J. Kubas, “Metal-dihydrogen and σ-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin π bonding,” Journal of Organometallic Chemistry, vol. 635, no. 1-2, pp. 37–68, 2001. View at Publisher · View at Google Scholar · View at Scopus
  140. Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, “Clustering of Ti on a C60 surface and its effect on hydrogen storage,” Journal of the American Chemical Society, vol. 127, no. 42, pp. 14582–14583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Yoon, S. Yang, C. Hicke, E. Wang, D. Geohegan, and Z. Zhang, “Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage,” Physical Review Letters, vol. 100, no. 20, Article ID 206806, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  142. A. J. Maeland and A. T. Skjeltrop, Inventors; Hydrogen storage in carbon material. patent 6290753. 2001.
  143. A. Gotzias, H. Heiberg-Andersen, M. Kainourgiakis, and T. Steriotis, “Grand canonical Monte Carlo simulations of hydrogen adsorption in carbon cones,” Applied Surface Science, vol. 256, no. 17, pp. 5226–5231, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. P. B. Sorokin, H. Lee, L. Y. Antipina, A. K. Singh, and B. I. Yakobson, “Calcium-decorated carbyne networks as hydrogen storage media,” Nano Letters, vol. 11, no. 7, pp. 2660–2665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. D. Cao, X. Zhang, J. Chen, W. Wang, and J. Yun, “Optimization of single-walled carbon nanotube arrays for methane storage at room temperature,” Journal of Physical Chemistry B, vol. 107, no. 48, pp. 13286–13292, 2003. View at Scopus
  146. W. A. Steele, “The physical interaction of gases with crystalline solids. I. Gas-solid energies and properties of isolated adsorbed atoms,” Surface Science, vol. 36, no. 1, pp. 317–352, 1973. View at Scopus
  147. P. Kowalczyk, L. Solarz, D. D. Do, A. Samborski, and J. M. D. MacElroy, “Nanoscale tubular vessels for storage of methane at ambient temperatures,” Langmuir, vol. 22, no. 21, pp. 9035–9040, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. F. J. A. L. Cruz and J. P. B. Mota, “Thermodynamics of adsorption of light alkanes and alkenes in single-walled carbon nanotube bundles,” Physical Review B, vol. 79, no. 16, Article ID 165426, 14 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. P. Kowalczyk and S. K. Bhatia, “Optimization of slitlike carbon nanopores for storage of hythane fuel at ambient temperatures,” Journal of Physical Chemistry B, vol. 110, no. 47, pp. 23770–23776, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. P. Kowalczyk, L. Brualla, A. Zywociński, and S. K. Bhatia, “Single-walled carbon nanotubes: efficient nanomaterials for separation and on-board vehicle storage of hydrogen and methane mixture at room temperature?” Journal of Physical Chemistry C, vol. 111, no. 13, pp. 5250–5257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. X. Peng, D. Cao, and W. Wang, “Heterogeneity characterization of ordered mesoporous carbon adsorbent CMK-1 for methane and hydrogen storage: GCMC simulation and comparison with experiment,” Journal of Physical Chemistry C, vol. 112, no. 33, pp. 13024–13036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  152. R. J. Dombrowski, D. R. Hyduke, and C. M. Lastoskie, “Pore size analysis of activated carbons from argon and nitrogen porosimetry using density functional theory,” Langmuir, vol. 16, no. 11, pp. 5041–5050, 2000. View at Publisher · View at Google Scholar · View at Scopus
  153. J. P. Olivier, “Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data,” Carbon, vol. 36, no. 10, pp. 1469–1472, 1998. View at Scopus
  154. P. I. Ravikovitch, A. Vishnyakov, R. Russo, and A. V. Neimark, “Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms,” Langmuir, vol. 16, no. 5, pp. 2311–2320, 2000. View at Publisher · View at Google Scholar · View at Scopus
  155. M. B. Sweatman, N. Quirke, W. Zhu, and F. Kapteijn, “Analysis of gas adsorption in Kureha active carbon based on the slit-pore model and Monte-Carlo simulations,” Molecular Simulation, vol. 32, no. 7, pp. 513–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH2, CO, NO2, and NO on graphene: a first-principles study,” Physical Review B, vol. 77, no. 12, Article ID 125416, 6 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. P. Giannozzi, R. Car, and G. Scoles, “Oxygen adsorption on graphite and nanotubes,” Journal of Chemical Physics, vol. 118, no. 3, pp. 1003–1006, 2003. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Ricca, C. W. Bauschlicher, and A. Maiti, “Comparison of the reactivity of O2 with a (10,0) and a (9,0) carbon nanotube,” Physical Review B, vol. 68, no. 3, Article ID 035433, 7 pages, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. B. C. Wood, S. Y. Bhide, D. Dutta et al., “Methane and carbon dioxide adsorption on edge-functionalized graphene: a comparative DFT study,” Journal of Chemical Physics, vol. 137, no. 5, Article ID 054702, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  160. A. N. Rudenko, F. J. Keil, M. I. Katsnelson, and A. I. Lichtenstein, “Adsorption of diatomic halogen molecules on graphene: a van der Waals density functional study,” Physical Review B, vol. 82, no. 3, Article ID 035427, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. L. M. Woods, Ş. C. Bǎdescu, and T. L. Reinecke, “Adsorption of simple benzene derivatives on carbon nanotubes,” Physical Review B, vol. 75, no. 15, Article ID 155415, 9 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  162. D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, “Hydrogen on graphene: electronic structure, total energy, structural distortions and magnetism from first-principles calculations,” Physical Review B, vol. 77, no. 3, Article ID 035427, 7 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. O. V. Yazyev and L. Helm, “Defect-induced magnetism in graphene,” Physical Review B, vol. 75, no. 12, Article ID 125408, 5 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. P. Mohn, Magnetism in the Solid State, vol. 134 of Springer Series in Solid State Sciences, Springer, Berlin, Germany, 2003.
  165. O. Maresca, R. J. M. Pellenq, F. Marinelli, and J. Conard, “A search for a strong physisorption site for H2 in Li-doped porous carbons,” Journal of Chemical Physics, vol. 121, no. 24, pp. 12548–12558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  166. Y. Miura, H. Kasai, W. Diño, H. Nakanishi, and T. Sugimoto, “First principles studies for the dissociative adsorption of H2 on graphene,” Journal of Applied Physics, vol. 93, no. 6, pp. 3395–3400, 2003. View at Publisher · View at Google Scholar · View at Scopus
  167. S. Casolo, O. M. Løvvik, R. Martinazzo, and G. F. Tantardini, “Understanding adsorption of hydrogen atoms on graphene,” Journal of Chemical Physics, vol. 130, no. 5, Article ID 054704, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. H. Lee, J. Li, G. Zhou, W. Duan, G. Kim, and J. Ihm, “Room-temperature dissociative hydrogen chemisorption on boron-doped fullerenes,” Physical Review B, vol. 77, no. 23, Article ID 235101, 5 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. E. Rangel, G. Ruiz-Chavarria, L. F. Magana, and J. S. Arellano, “Hydrogen adsorption on N-decorated single wall carbon nanotubes,” Physics Letters, Section A, vol. 373, no. 30, pp. 2588–2591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. B. Huang, Z. Li, Z. Liu et al., “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” Journal of Physical Chemistry C, vol. 112, no. 35, pp. 13442–13446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. Z. H. Guo, X. H. Yan, and Y. Xiao, “Dissociation of methane on the surface of charged defective carbon nanotubes,” Physics Letters, Section A, vol. 374, no. 13-14, pp. 1534–1538, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. X. Hu, Z. Zhou, Q. Lin, Y. Wu, and Z. Zhang, “High reactivity of metal-free nitrogen-doped carbon nanotube for the C-H activation,” Chemical Physics Letters, vol. 503, no. 4–6, pp. 287–291, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. A. Martínez, M. Francisco-Marquez, and A. Galano, “Effect of different functional groups on the free radical scavenging capability of single-walled carbon nanotubes,” Journal of Physical Chemistry C, vol. 114, no. 35, pp. 14734–14739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. A. Galano, M. Francisco-Marquez, and A. Martínez, “Influence of point defects on the free-radical scavenging capability of single-walled carbon nanotubes,” Journal of Physical Chemistry C, vol. 114, no. 18, pp. 8302–8308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. C. W. Bauschlicher and A. Ricca, “Binding of NH3 to graphite and to a (9,0) carbon nanotube,” Physical Review B, vol. 70, no. 11, Article ID 115409, 6 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. A. Goldoni, L. Petaccia, S. Lizzit, and R. Larciprete, “Sensing gases with carbon nanotubes: a review of the actual situation,” Journal of Physics Condensed Matter, vol. 22, no. 1, Article ID 013001, 2010. View at Publisher · View at Google Scholar · View at Scopus