About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 185029, 7 pages
http://dx.doi.org/10.1155/2012/185029
Research Article

Activity of Antimicrobial Silver Polystyrene Nanocomposites

1Istituto per i Materiali Compositi e Biomedici, CNR, Piazzale Tecchio 80, 80125 Napoli, Italy
2Istituto di Cibernetica, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
3Dipartimento di Scienze Politiche, Sociali e della Comunicazione, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano, Italy
4Istituto Nazionale di Ottica, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
5INFN Sezione di Napoli, Via Cintia (Complesso Monte S. Angelo), 80126 Napoli, Italy

Received 24 June 2012; Accepted 22 October 2012

Academic Editor: Kin Tak Lau

Copyright © 2012 M. Palomba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Nicolais and G. Carotenuto, Metal-Polymer Nanocomposites, John Wiley & Sons, Hoboken, NJ, USA, 2005.
  2. F. Nicolais and G. Carotenuto, “Synthesis of polymer-embedded metal, semimetal, or sulfide clusters by thermolysis of mercaptide molecules dissolved in polymers,” Recent Patent on Materials Science, vol. 1, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar
  3. E. Amato, Y. A. Diaz-Fernandez, A. Taglietti et al., “Synthesis, characterization and antibacterial activity against gram positive and gram negative bacteria of biomimetically coated silver nanoparticles,” Langmuir, vol. 27, no. 15, pp. 9165–9173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Pallavicini, A. Taglietti, G. Dacarro et al., “Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity,” Journal of Colloid and Interface Science, vol. 350, no. 1, pp. 110–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Dallas, V. K. Sharma, and R. Zboril, “Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives,” Advances in Colloid and Interface Science, vol. 166, no. 1-2, pp. 119–135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. D. Deshmukh and R. J. Composto, “Surface segregation of silver nanoparticles in the in-situ synthesized Ag/PMMA nanocomposites,” in Proceedings of the Bulletin of the American Physical Society, Baltimore, Md, USA, March 2006.
  7. C. Damm and H. Münstedt, “Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites,” Applied Physics A, vol. 91, no. 3, pp. 479–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Jokar, R. Abdul Rahman, N. A. Ibrahim, L. C. Abdullah, and C. P. Tan, “Melt production and antimicrobial efficiency of low-density polyethylene (LDPE)-silver nanocomposite film,” Food and Bioprocess Technology, vol. 5, no. 2, pp. 719–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Carotenuto, M. Palomba, A. Longo, S. de Nicola, and L. Nicolais, “Optical limiters based on silver nanoparticles embedded in amorphous polystyrene,” Science and Engineering of Composite Materials, vol. 18, no. 3, pp. 187–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Pullini, G. Carotenuto, M. Palomba, A. Mosca, A. Horsewell, and L. Nicolais, “In situ synthesis of high-density contact-free Ag-nanoparticles for plasmon resonance polystyrene nanocomposites,” Journal of Materials Science, vol. 46, no. 24, pp. 7905–7911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Willis, Z. Chen, J. He, Y. Zhu, N. J. Turro, and S. O'Brien, “Metal acetylacetonates as general precursors for the synthesis of early transition metal oxide nanomaterials,” Journal of Nanomaterials, vol. 2007, Article ID 14858, 7 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Berney, F. Hammes, F. Bosshard, H. U. Weilenmann, and T. Egli, “Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry,” Applied and Environmental Microbiology, vol. 73, no. 10, pp. 3283–3290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Sjollema, M. Rustema-Abbing, H. C. van der Mei, and H. J. Busscher, “Generalized relationship between numbers of bacteria and their viability in biofilms,” Applied and Environmental Microbiology, vol. 77, no. 14, pp. 5027–5029, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Pollini, F. Paladini, A. Licciulli, A. Maffezzoli, L. Nicolais, and A. Sannino, “Silver-coated wool yarns with durable antibacterial properties,” Journal of Applied Polymer Science, vol. 125, no. 3, pp. 2239–2244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. I. R. Kamrupi, P. Phukon, B. K. Konwer, and S. K. Dolui, “Synthesis of silver-polystyrene nanocomposite particles using water in supercritical carbon dioxide medium and its antimicrobial activity,” Journal of Supercritical Fluids, vol. 55, no. 3, pp. 1089–1094, 2011. View at Publisher · View at Google Scholar · View at Scopus