About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 278364, 6 pages
Research Article

Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air

1Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan
2Graduate Institute of Electro-optical Engineering, Tatung University, Taipei 104, Taiwan
3Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Received 27 March 2012; Revised 21 June 2012; Accepted 9 July 2012

Academic Editor: Marinella Striccoli

Copyright © 2012 Hsuan I Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We demonstrate an effective method to prepare wurtzite phase ZnSe nanoparticles from zincblende ZnSe single crystal using femtosecond pulse laser ablation. The fabricated ZnSe nanoparticles are in spherical shape and uncontaminated while synthesized under ambient environment. By controlling the laser fluences, the average size of ZnSe nanoparticles can be varied from ~16 nm to ~22 nm in diameter. In Raman spectra, the surface phonon mode becomes dominant in the smaller average particle size with uniform size distribution. The interesting phase transition from the zinc blende structure of ZnSe single crystal to wurtzite structure of ZnSe nanoparticles may have been induced by the ultrahigh ablation pressure at the local area due to the sudden injection of high energy leading to solid-solid transition.