About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 317857, 5 pages
http://dx.doi.org/10.1155/2012/317857
Research Article

Sonochemical Synthesis of -Doped ZnO Nanospheres with Enhanced Upconversion Photoluminescence

1State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
2Department of Chemistry, Jiangsu Institute of Education, Nanjing 210013, China

Received 24 September 2012; Accepted 8 October 2012

Academic Editor: Xiao-Miao Feng

Copyright © 2012 Jun Geng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 243–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Wang, X. Kong, G. Shan et al., “Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals,” Journal of Physical Chemistry B, vol. 108, no. 48, pp. 18408–18413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Bai, Y. Wang, K. Yang et al., “The effect of Li on the spectrum of Er3+ in Li- and Er-codoped ZnO nanocrystals,” Journal of Physical Chemistry C, vol. 112, no. 32, pp. 12259–12263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, “Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation,” Applied Physics Letters, vol. 74, no. 1, pp. 120–122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Zhong, J. Xu, J. Su, and Y. L. Chen, “Upconversion luminescence from Er-N codoped of ZnO nanowires prepared by ion implantation method,” Applied Surface Science, vol. 257, no. 8, pp. 3495–3498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Harako, S. Yokoyama, K. Ide, X. Zhao, and S. Komoro, “Visible and infrared electroluminescence from an Er-doped n-ZnO/p-Si light emitting diode,” Physica Status Solidi A, vol. 205, no. 1, pp. 19–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Chen, X. L. Xu, G. H. Zhang, H. Xue, and S. Y. Ma, “Blue shift of optical band gap in Er-doped ZnO thin films deposited by direct current reactive magnetron sputtering technique,” Physica E, vol. 42, no. 5, pp. 1713–1716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Zhou, T. Komori, T. Ayukawa et al., “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Applied Physics Letters, vol. 87, no. 9, Article ID 091109, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Meng, C. Liu, F. Wu, and J. Li, “Strong up-conversion emissions in ZnO:Er3+, ZnO:Er3+-Yb3+ nanoparticles and their surface modified counterparts,” Journal of Colloid and Interface Science, vol. 358, no. 2, pp. 334–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kohls, T. Schmidt, H. Katschorek et al., “Simple colloidal route to planar micropatterned ErZnO amplifiers,” Advanced Materials, vol. 11, no. 4, pp. 288–292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-Y. Chen, K.-Y. Lai, J.-W. Lo et al., “Electronic structures of well-aligned Er-doped ZnO nanorod arrays,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 12, pp. 10615–10619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. W. C. Yang, C. W. Wang, J. H. He et al., “Facile synthesis of large scale Er-doped ZnO flower-like structures with enhanced 1.54 μm infrared emission,” Physica Status Solidi A, vol. 205, no. 5, pp. 1190–1195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Sun, Y. Chen, L. Tian et al., “Morphology-dependent upconversion luminescence of ZnO:Er3+ nanocrystals,” Journal of Luminescence, vol. 128, no. 1, pp. 15–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. S. Suslick, S. B. Choe, A. A. Cichowlas, and M. W. Grinstaff, “Sonochemical synthesis of amorphous iron,” Nature, vol. 353, no. 6343, pp. 414–416, 1991. View at Scopus
  15. A. Nemamcha, J. L. Rehspringer, and D. Khatmi, “Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution,” Journal of Physical Chemistry B, vol. 110, no. 1, pp. 383–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Geng, W. H. Hou, Y. N. Lv, J. J. Zhu, and H. Y. Chen, “One-dimensional BiPO4 nanorods and two-dimensional BiOCl lamellae: fast low-temperature sonochemical synthesis, characterization, and growth mechanism,” Inorganic Chemistry, vol. 44, no. 23, pp. 8503–8509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. L. P. Jiang, S. Xu, J. M. Zhu, J. R. Zhang, J. J. Zhu, and H. Y. Chen, “Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings,” Inorganic Chemistry, vol. 43, no. 19, pp. 5877–5883, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. K. Rana, Y. Mastai, and A. Gedanken, “Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles,” Advanced Materials, vol. 14, no. 19, pp. 1414–1418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Geng, J. J. Zhu, D. J. Lu, and H. Y. Chen, “Hollow PbWO4 nanospindles via a facile sonochemical route,” Inorganic Chemistry, vol. 45, no. 20, pp. 8403–8407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Geng, X. D. Jia, and J. J. Zhu, “Sonochemical selective synthesis of ZnO/CdS core/shell nanostructures and their optical properties,” CrystEngComm, vol. 13, no. 1, pp. 193–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Geng, D. Lu, J. J. Zhu, and H. Y. Chen, “Antimony(III)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route,” Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13777–13785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. S. Fu, X. W. Du, J. Sun, Y. F. Song, and J. Liu, “Kinetics controlled growth of quasi-spherical ZnO single crystal in homogeneous solutions,” Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 527–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Doktycz and K. S. Suslick, “Interparticle collisions driven by ultrasound,” Science, vol. 247, no. 4946, pp. 1067–1069, 1990. View at Scopus
  24. N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, and G. Cantwell, “Role of copper in the green luminescence from ZnO crystals,” Applied Physics Letters, vol. 81, no. 4, pp. 622–624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Wahl, E. Rita, J. G. Correia, E. Alves, and J. P. Araújo, “Implantation site of rare earths in single-crystalline ZnO,” Applied Physics Letters, vol. 82, no. 8, pp. 1173–1175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Zhou, T. Komori, M. Yoshino et al., “Enhanced 1.54 μm photoluminescence from Er-containing ZnO through nitrogen doping,” Applied Physics Letters, vol. 86, no. 4, Article ID 041107, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Komuro, T. Katsumata, T. Morikawa, X. Zhao, H. Isshiki, and Y. Aoyagi, “Highly erbium-doped zinc-oxide thin film prepared by laser ablation and its 1.54 μm emission dynamics,” Journal of Applied Physics, vol. 88, no. 12, pp. 7129–7136, 2000. View at Scopus
  28. Y. Liu, C. Xu, and Q. Yang, “White upconversion of rare-earth doped ZnO nanocrystals and its dependence on size of crystal particles and content of Yb3+ and Tm3+,” Journal of Applied Physics, vol. 105, no. 8, Article ID 084701, 6 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus