About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 398582, 6 pages
http://dx.doi.org/10.1155/2012/398582
Research Article

Morphology and Photoluminescence of Ba0.5Sr0.5MoO4 Powders by a Molten Salt Method

College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu, Nanjing 210009, China

Received 15 October 2012; Revised 6 November 2012; Accepted 7 November 2012

Academic Editor: Zhenhui Kang

Copyright © 2012 Ling Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Scopus
  2. D. D. Archibald and S. Mann, “Template mineralization of self-assembled anisotropic lipid microstructures,” Nature, vol. 364, no. 6436, pp. 430–433, 1993. View at Scopus
  3. V. A. Morozov, A. V. Arakcheeva, G. Chapuis, N. Guiblin, M. D. Rossell, and G. Van Tendeloo, “KNd(MoO4)2: a new incommensurate modulated structure in the scheelite family,” Chemistry of Materials, vol. 18, no. 17, pp. 4075–4082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Zhang, F. Yang, J. Yang, Y. Tang, and P. Yuan, “Synthesis of crystalline SrMoO4 nanowires from polyoxometalates,” Solid State Communications, vol. 133, no. 12, pp. 759–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. C. Ling, H. R. Xia, D. G. Ran et al., “Lattice vibration spectra and thermal properties of SrWO4 single crystal,” Chemical Physics Letters, vol. 426, no. 1–3, pp. 85–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, and X. Fu, “Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and SrMoO4,” Applied Catalysis B, vol. 91, no. 1-2, pp. 135–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” Journal of the European Ceramic Society, vol. 27, no. 2-3, pp. 1059–1063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Tyagi, Sangeeta, D. G. Desai, and S. C. Sabharwal, “New observations on the luminescence of lead molybdate crystals,” Journal of Luminescence, vol. 128, no. 1, pp. 22–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Thongtem, S. Kaowphong, and S. Thongtem, “Influence of cetyltrimethylammonium bromide on the morphology of AWO4 (A = Ca, Sr) prepared by cyclic microwave irradiation,” Applied Surface Science, vol. 254, no. 23, pp. 7765–7769, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. W. S. Cho and M. Yoshimura, “Structural evolution and characterization of crystallized luminescent Sr1−xCaxWO4 solid-solution films prepared by an electrochemical method at room temperature,” Journal of Applied Physics, vol. 83, no. 1, pp. 518–523, 1998. View at Scopus
  11. Z. L. Fu, W. W. Xia, Q. S. Li, X. Y. Cui, and W. H. Li, “Highly uniform NaLa(MoO4)2: Ln3+(Ln=EU, Dy) microspheres: template-free hydrothermal synthesis, growing mechanism, and luminescent properties,” CrystEngComm, vol. 14, pp. 4618–4624, 2012.
  12. E. Tomaszewicz, S. M. Kaczmarek, and H. Fuks, “New cadmium and rare-earth metal molybdates with scheelite-type structure,” Materials Chemistry and Physics, vol. 122, no. 2-3, pp. 595–601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kaddouri, E. Tempesti, and C. Mazzocchia, “Comparative study of β-nickel molybdate phase obtained by conventional precipitation and the sol-gel method,” Materials Research Bulletin, vol. 39, no. 4-5, pp. 695–706, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Pôrto, E. Longo, P. S. Pizani et al., “Photoluminescence in the CaxSr1−xWO4 system at room temperature,” Journal of Solid State Chemistry, vol. 181, no. 8, pp. 1876–1881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Rangappa, T. Fujiwara, T. Watanabe, and M. Yoshimura, “Preparation of Ba1−xSrxWO4 and Ba1−xCaxWO4 films on tungsten plate by mechanically assisted solution reaction at room temperature,” Materials Chemistry and Physics, vol. 109, no. 2-3, pp. 217–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Shi, J. Chen, and S. Gao, “Preparation and characterization of red-luminescence phosphors Ca0.5Sr0.5MoO4:EU3+ for white-light-emitting diodes,” Journal of the Chinese Ceramic Society, vol. 39, no. 2, pp. 219–222, 2011. View at Scopus
  17. J. D. H. Donnay and D. Harker, “A new law of crystal morphology extending the law of bravais,” Journal of Mineralogical Society of American, vol. 22, pp. 446–467, 1937.
  18. T. He, D. Chen, X. Jiao, and Y. Wang, “Co3O4 nanoboxes: surfactant-templated fabrication and microstructure characterization,” Advanced Materials, vol. 18, no. 8, pp. 1078–1082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Gao, X. Ge, Z. Chai, G. Xu, X. Wang, and C. Wang, “Shape-controlled synthesis of octahedral α-NaYF4 and its rare earth doped submicrometer particles in acetic acid,” Nano Research, vol. 2, no. 7, pp. 565–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Wu, J. Du, H. Li et al., “Aqueous mineralization process to synthesize uniform shuttle-like BaMoO4 microcrystals at room temperature,” Journal of Solid State Chemistry, vol. 180, no. 11, pp. 3288–3295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Wang, J. Ma, J. Tao et al., “Low temperature synthesis of CaMoO4 nanoparticles,” Ceramics International, vol. 33, no. 4, pp. 693–695, 2007. View at Publisher · View at Google Scholar · View at Scopus