About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 452310, 5 pages
http://dx.doi.org/10.1155/2012/452310
Research Article

GaN Schottky Diode with TiW Electrodes on Silicon Substrate Based on AlN/AlGaN Buffer Layer

Institute of Microelectronics & Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan

Received 30 May 2012; Revised 12 November 2012; Accepted 26 November 2012

Academic Editor: Yong Yang

Copyright © 2012 Sheng-Po Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Z. Chiou, Y. K. Su, S. J. Chang et al., “High detectivity InGaN-GaN multiquantum well p-n junction photodiodes,” IEEE Journal of Quantum Electronics, vol. 39, no. 5, pp. 681–685, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Monroy, E. Muňoz, F. J. Sánchez et al., “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semiconductor Science and Technology, vol. 13, no. 9, p. 1042, 1998. View at Publisher · View at Google Scholar
  3. G. Y. Xu, A. Salvador, W. Kim et al., “High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n)structures,” Applied Physics Letters, vol. 71, no. 15, p. 2154, 1997. View at Publisher · View at Google Scholar
  4. M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, “Multilayer (Al,Ga)N structures for solar-blind detection,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 10, no. 4, pp. 752–758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind A1GaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1718–1720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed characterization of solar-blind AlxGa1-xN p-i-n photodiodes,” Semiconductor Science and Technology, vol. 19, no. 11, pp. 1259–1262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Parish, S. Keller, P. Kozodoy et al., “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN,” Applied Physics Letters, vol. 75, no. 2, pp. 247–249, 1999. View at Scopus
  8. A. Osinsky, S. Gangopadhyay, R. Gaska et al., “Low noise p-π-n GaN ultraviolet photodetectors,” Applied Physics Letters, vol. 71, no. 16, pp. 2334–2336, 1997. View at Scopus
  9. V. Adivarahan, G. Simin, J. W. Yang et al., “SiO2 lateral-geometry GaN transparent Schottky-barrier detectors,” Applied Physics Letters, vol. 77, no. 6, pp. 863–865, 2000. View at Scopus
  10. S. J. Chang, M. L. Lee, J. K. Sheu et al., “GaN metal-semiconductor-metal photodetectors with low-temperature-GaN cap layers and ITO metal contacts,” IEEE Electron Device Letters, vol. 24, no. 4, pp. 212–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Applied Physics Letters, vol. 79, no. 10, pp. 1417–1419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Monroy, T. Palacios, O. Hainaut, F. Omnès, F. Calle, and J. F. Hochedez, “Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection,” Applied Physics Letters, vol. 80, no. 17, p. 3198, 2002. View at Publisher · View at Google Scholar
  13. J. L. Pau, C. Rivera, E. Muňoz et al., “Response of ultra-low dislocation density GaN photodetectors in the near- and vacuum-ultraviolet,” Journal of Applied Physics, vol. 95, no. 12, p. 8275, 2004. View at Publisher · View at Google Scholar
  14. C. F. Shih, N. C. Chen, C. A. Chang, and K. S. Liu, “Blue, Green and White InGaN Light-Emitting Diodes Grown on Si,” Japanese Journal of Applied Physics, vol. 44, pp. L140–L143, 2005. View at Publisher · View at Google Scholar
  15. H. Ishikawa, K. Asano, B. Zhang, T. Egawa, and T. Jimbo, “Improved characteristics of GaN-based light-emitting diodes by distributed Bragg reflector grown on Si,” Physica Status Solidi, vol. 201, no. 12, pp. 2653–2657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Iwakami, M. Yanagihara, O. Machida et al., “AlGaN/GaN heterostructure field-effect transistors (HFETs) on Si substrates for large-current operation,” Japanese Journal of Applied Physics, vol. 43, pp. L831–L833, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Curutchet, N. Malbert, N. Labat et al., “Low frequency drain noise comparison of AlGaN/GaN HEMT's grown on silicon, SiC and sapphire substrates,” Microelectronics Reliability, vol. 43, no. 9–11, pp. 1713–1718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Javorka, A. Alam, M. Marso et al., “Material and device issues of AlGaN/GaN HEMTs on silicon substrates,” Microelectronics Journal, vol. 34, no. 5–8, pp. 435–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Hoël, Y. Guhel, B. Boudart et al., “Static measurements of GaN MESFETs on (111) Si substrates,” Electronics Letters, vol. 37, no. 17, pp. 1095–1096, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. P. Hsu, S. J. Chang, W. S. Chen, J. K. Sheu, J. Y. Chu, and C. T. Kuo, “Crack-free high-brightness InGaN/GaN LEDs on Si(111) with initial AlGaN buffer and two LT-Al interlayers,” Journal of the Electrochemical Society, vol. 154, no. 3, pp. H191–H193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 2, pp. 278–283, 2002. View at Publisher · View at Google Scholar
  22. S. J. Chang, C. S. Chang, Y. K. Su et al., “Highly reliable nitride-based LEDs with SPS+ITO upper contacts,” IEEE Journal of Quantum Electronics, vol. 39, no. 11, pp. 1439–1443, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Chang, C. H. Kuo, Y. K. Su et al., “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 744–748, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. J. Chang, C. S. Chang, Y. K. Su et al., “Nitride-based flip-chip ITO LEDs,” IEEE Transactions on Advanced Packaging, vol. 28, no. 2, pp. 273–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. C. K. Wang, S. J. Chang, Y. K. Su et al., “GaN MSM UV photodetectors with titanium tungsten transparent electrodes,” IEEE Trans. Electron Dev, vol. 53, no. 1, pp. 38–42, 2006. View at Publisher · View at Google Scholar
  26. Y. Z. Chiou, “Nitride-based p-i-n bandpass photodetectors,” IEEE Electron Device Letters, vol. 26, no. 3, pp. 172–174, 2005. View at Publisher · View at Google Scholar
  27. A. Osinsky, S. Gangopadhyay, J. W. Yang, and R. Gaska, “Visible-blind GaN Schottky barrier detectors grown on Si(111),” Applied Physics Letters, vol. 72, no. 5, p. 551, 1998. View at Publisher · View at Google Scholar
  28. Y. Z. Chiou, Y. C. Lin, and C. K. Wang, “A1GaN photodetectors prepared on Si substrates,” IEEE Electron Device Letters, vol. 28, no. 4, pp. 264–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. K. Su, P. C. Chang, C. H. Chen et al., “Nitride-based MSM UV photodetectors with photo-chemical annealing Schottky contacts,” Solid-State Elctron, vol. 49, no. 3, pp. 459–463, 2005. View at Publisher · View at Google Scholar