About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 452407, 6 pages
http://dx.doi.org/10.1155/2012/452407
Research Article

Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods

1Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Seriab, Kangar, 01000 Perlis, Malaysia
2Nanotechnology and Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Electronic Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
4NANO-ElecTronic Centre (NET), Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), Selangor, 40450 Shah Alam, Malaysia
5Department of Science and Technology, Campus Norrköping, Linköping University, 60174 Norrköping, Sweden

Received 18 May 2012; Revised 27 August 2012; Accepted 27 August 2012

Academic Editor: Gong Ru Lin

Copyright © 2012 M. Kashif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Chai, O. Lupan, L. Chow, and H. Heinrich, “Crossed zinc oxide nanorods for ultraviolet radiation detection,” Sensors and Actuators A, vol. 150, no. 2, pp. 184–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Asif, O. Nur, M. Willander, and B. Danielsson, “Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET,” Biosensors and Bioelectronics, vol. 24, no. 11, pp. 3379–3382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Niepel, U. C. Schröder, J. Sommerfeld et al., “Biofunctionalization of zinc oxide nanowires for DNA sensory applications,” Nanoscale Research Letters, vol. 6, article 511, 2011. View at Publisher · View at Google Scholar
  4. M. Fakhar-e-Alam, M. U. Syed Ali, Z. Ibupoto et al., “Sensitivity of A-549 human lung cancer cells to nanoporous zinc oxide conjugated with Photofrin,” Lasers in Medical Science, vol. 27, no. 3, pp. 607–614, 2012. View at Publisher · View at Google Scholar
  5. T. Krishnakumar, R. Jayaprakash, N. Pinna et al., “CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route,” Sensors and Actuators B, vol. 143, no. 1, pp. 198–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Liu and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” Journal of the American Chemical Society, vol. 125, no. 15, pp. 4430–4431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kashif, M. Syed Usman Ali, M. E. Ali et al., “Morphological, optical, and Raman characteristics of ZnO nanoflakes prepared via a sol-gel method,” Physica Status Solidi (A), vol. 209, no. 1, pp. 143–147, 2012. View at Publisher · View at Google Scholar
  8. X. Wu, F. Qu, X. Zhang, W. Cai, and G. Shen, “Fabrication of ZnO ring-like nanostructures at a moderate temperature via a thermal evaporation process,” Journal of Alloys and Compounds, vol. 486, no. 1-2, pp. L13–L16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Wang, K. Chen, and L. Dong, “Synthesis of exotic zigzag ZnO nanoribbons and their optical, electrical properties,” Journal of Physical Chemistry C, vol. 114, no. 41, pp. 17358–17361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Scalisi, R. G. Toro, G. Malandrino, M. E. Fragalà, and G. Pezzotti, “Growth of ZnO nanostructures produced by MOCVD: a study of the effect of the substrate,” Chemical Vapor Deposition, vol. 14, no. 5-6, pp. 115–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Advanced Materials, vol. 15, no. 5, pp. 464–466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kashif, Y. Al-Douri, U. Hashim, M. E. Ali, S. M. U. Ali, and M. Willander, “Characterisation, analysis and optical properties of nanostructure ZnO using the sol-gel method,” Micro & Nano Letters, vol. 7, no. 2, pp. 163–167, 2012. View at Publisher · View at Google Scholar
  13. N. Izyumskaya, V. Avrutin, W. Schoch et al., “Molecular beam epitaxy of high-quality ZnO using hydrogen peroxide as an oxidant,” Journal of Crystal Growth, vol. 269, no. 2–4, pp. 356–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Senthil Kumar, D. Chhikara, and K. M. K. Srivatsa, “Structure-controlled growth of ZnO nanonails by thermal evaporation technique,” Crystal Research and Technology, vol. 46, no. 9, pp. 991–996, 2011.
  15. X. Hu, Y. Masuda, T. Ohji, and K. Kato, “Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate,” Langmuir, vol. 24, no. 14, pp. 7614–7617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Masuda, N. Kinoshita, F. Sato, and K. Koumoto, “Site-selective deposition and morphology control of UV- and visible-light-emitting ZnO crystals,” Crystal Growth and Design, vol. 6, no. 1, pp. 75–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. G. M. Ali and P. Chakrabarti, “ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors,” Journal of Physics D, vol. 43, no. 41, Article ID 415103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Lei, F. Qu, and X. Wu, “Assembling ZnO nanorods into microflowers through a facile solution strategy: morphology control and cathodoluminescence properties,” Nano-Micro Letters, vol. 4, no. 1, pp. 45–51, 2012.
  19. Y. Ni, S. Yang, J. Hong, L. Zhang, W. Wu, and Z. Yang, “Fabrication, characterization and properties of flowerlike ZnS– ZnO heterogeneous microstructures built up by ZnS-particle-strewn ZnO microrods,” Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8200–8205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Wu, G. Hu, S. Cui, Y. Zhou, and H. Wu, “Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route,” Crystal Growth and Design, vol. 8, no. 11, pp. 4014–4020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, and J. Y. Leem, “Post-annealing effects on properties of ZnO nanorods grown on Au seed layers,” Bulletin of the Korean Chemical Society, vol. 32, no. 3, pp. 880–884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. T. Yin, W. X. Que, and C. H. Kam, “ZnO nanorods on ZnO seed layer derived by sol-gel process,” Journal of Sol-Gel Science and Technology, vol. 53, no. 3, pp. 605–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Willander, L. L. Yang, A. Wadeasa et al., “Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices,” Journal of Materials Chemistry, vol. 19, no. 7, pp. 1006–1018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. J. Xing, Z. H. Xi, Z. Q. Xue et al., “Optical properties of the ZnO nanotubes synthesized via vapor phase growth,” Applied Physics Letters, vol. 83, no. 9, pp. 1689–1691, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. H. J. Fan, R. Scholz, F. M. Kolb et al., “On the growth mechanism and optical properties of ZnO multi-layer nanosheets,” Applied Physics A, vol. 79, no. 8, pp. 1895–1900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Mridha and D. Basak, “Effect of concentration of hexamethylene tetramine on the structural morphology and optical properties of ZnO microrods grown by low-temperature solution approach,” Physica Status Solidi (A), vol. 206, no. 7, pp. 1515–1519, 2009. View at Publisher · View at Google Scholar · View at Scopus