About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 463748, 8 pages
http://dx.doi.org/10.1155/2012/463748
Research Article

Evolution of Space Charges and Conductivity with DC Aging of Polyethylene-Synthetic and Natural Clay Composites

Power Measurement Group, Institute of Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road Building, Ottawa, ON, Canada K1A 0R6

Received 25 July 2012; Revised 9 November 2012; Accepted 11 November 2012

Academic Editor: Tianxi Liu

Copyright © 2012 Mahmoud Abou-Dakka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. S. Ellis and J. S. D'Angelo, “Thermal and mechanical properties of a polypropylene nanocomposite,” Journal of Applied Polymer Science, vol. 90, no. 6, pp. 1639–1647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, “Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties,” Chemistry of Materials, vol. 13, no. 10, pp. 3516–3523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Wenyi, Z. Xiaofei, W. Guoquan, and C. Jianfeng, “Preparation and properties of polypropylene filled with organo-montmorillonite nanocomposites,” Journal of Applied Polymer Science, vol. 100, no. 4, pp. 2875–2880, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. B. Messersmith and E. P. Giannelis, “Synthesis and characterization of layered silicate-epoxy nanocomposites,” Chemistry of Materials, vol. 6, no. 10, pp. 1719–1725, 1994. View at Scopus
  5. N. Fuze, T. Tanaka, and Y. Ohki, “Evolution of dielectric properties in polyethylene/clay nanocomposites,” in Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena (CEIDP '09), pp. 507–510, Virgina Beach, Va, USA, October 2009.
  6. J. K. Nelson and Y. Hu, “Nanocomposite dielectrics—properties and implications,” Journal of Physics D, vol. 38, no. 2, pp. 213–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kozako, N. Fuse, Y. Ohki, T. Okamoto, and T. Tanaka, “Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 833–839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Tanaka, “Interface properties and surface erosion resistance,” in Dielectric Polymer Nanocomposites, K. Nelson, Ed., pp. 229–258, Springer Science and Business Media, 2010.
  9. Y. Dimitrienko, “Modelling of the mechanical properties of composite materials at high temperatures: part 1. Matrix and fibers,” Applied Composite Materials, vol. 4, no. 4, pp. 219–237, 1997. View at Scopus
  10. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, “Synthesis and properties of polymide-clay hybrid,” Journal of Polymer Science A, vol. 31, no. 10, pp. 2493–2498, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zhu, A. B. Morgan, F. J. Lamelas, and C. A. Wilkie, “Fire properties of polystyrene-clay nanocomposites,” Chemistry of Materials, vol. 13, no. 10, pp. 3774–3780, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Ding, H. He, B. Guo, and D. Jia, “Structure and properties of polypropylene/clay nanocomposites compatibilized by solid-phase grafted polypropylene,” Polymer Composites, vol. 29, no. 6, pp. 698–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Nelson, “The promise of dielectric nanocomposites,” in Proceedings of the IEEE International Symposium on Electrical Insulation (ISEI' 06), pp. 452–457, Toronto, Canada, June 2006.
  14. M. Abou Dakka, A. Bulinski, and S. S. Bamji, “Space charge evolution in polypropylene containing synthetic and natural organoclays,” in Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP '10), Indiana, Ind, USA, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. I. Velasco, M. Ardanuy, V. Realinho et al., “Polypropylene/clay nanocomposites: combined effects of clay treatment and compatibilizer polymers on the structure and properties,” Journal of Applied Polymer Science, vol. 102, no. 2, pp. 1213–1223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. F. Fréchette and C. W. Reed, “The role of molecular dielectrics in shaping the interface of polymer nanodielectrics,” in Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP '07), pp. 279–285, Vancouver, Canada, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. J. Lewis, “Interfaces: nanometric dielectrics,” Journal of Physics D, vol. 38, no. 2, pp. 202–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. E. J. Garboczi, K. A. Snyder, J. F. Douglas, and M. F. Thorpe, “Geometrical percolation threshold of overlapping ellipsoids,” Physical Review E, vol. 52, no. 1, pp. 819–828, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. http://www.vamas.org/twa33/index.html.
  20. L. A. Utracki, M. Sepehr, and E. Boccaleri, “Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs),” Polymers for Advanced Technologies, vol. 18, no. 1, pp. 1–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. http://www.scprod.com/product_bulletins/PB%20Cloisite%2020A.pdf.
  22. L. A. Utracki, “Clay-containing polymeric nanocomposites and their properties,” IEEE Electrical Insulation Magazine, vol. 26, no. 4, pp. 6–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Bulinski, S. S. Bamji, M. Abou-Dakka, and Y. Chen, “Dielectric properties of polypropylene containing synthetic and natural organoclays,” in Proceedings of the IEEE International Symposium on Electrical Insulation (ISEI '10), San Diego, Calif, USA, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Li, M. Yasuda, and T. Takada, “Pulsed electroacoustic method for measurement of charge accumulation in solid dielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 2, pp. 188–195, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, and R. Mulhaupt, “Poly(propylene)/organoclay nano-composites formation: Influence of compatibilizer functionality and organoclay modification,” Macromolecular Materials and Engineering, vol. 275, no. 1, pp. 8–17, 2000.
  26. M. Abou-Dakka, A. Bulinski, and S. Bamji, “Space charge development and breakdown in XLPE under DC field,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 41–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Chen, J. T. Sadipe, Y. Zhuang, C. Zhang, and G. C. Stevens, “Conduction in linear low density polyethylene nanodielectric materials,” in Proceedings of the IEEE 9th International Conference on the Properties and Applications of Dielectric Materials (ICPADM '09), pp. 845–848, Harbin, China, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. J. Lewis, “Interfaces are the dominant feature of dielectrics at the nanometric level,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 5, pp. 739–753, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. K. Nelson and J. C. Fothergill, “Internal charge behaviour of nanocomposites,” Nanotechnology, vol. 15, no. 5, pp. 586–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Fothergill, “Ageing, space charge and nanodielectrics: ten things we don't know about dielectrics,” in Proceedings of the International Conference on Solid Dielectrics (ICSD '07), pp. 1–10, Winchester, UK, July 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. J. Lewis, “Nanometric dielectrics,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 1, no. 5, pp. 812–825, 1994. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Fabiani, G. C. Montanari, and L. Testa, “Effect of water adsorption on the dielectric propertiesof nanostructured insulating materials,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 15, pp. 118–126, 2009.