About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 463768, 7 pages
http://dx.doi.org/10.1155/2012/463768
Research Article

Aluminum Silicate Nanotube Coating of Siloxane-Poly(lactic acid)-Vaterite Composite Fibermats for Bone Regeneration

1Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
2Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
3Ecological Ceramics Group, Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Anagahora Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan
4Bio-integration Processing Research Group, Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Anagahora Shimo-shidami, Moriyama-ku, Nagoya 463-8560, Japan

Received 20 July 2012; Revised 16 November 2012; Accepted 26 November 2012

Academic Editor: Yong Yang

Copyright © 2012 Shuji Yamazaki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In our earlier work, a flexible fibermat consisting of a biodegradable composite with soluble silicate species, which has been reported to enhance bone formation, was prepared successfully using poly(L-lactic acid) and siloxane-containing calcium carbonate particles by electrospinning. The fibermat showed enhanced bone formation in an in vivo test. In the present work, to improve the hydrophilicity of skeletal fibers in a fibermat, they were coated with nanotubular aluminum silicate crystals, which have a hydrophilic surface that has excellent affinity to body fluids and a high surface area advantageous for pronounced protein adsorption. The nanotubes were coated easily on the fiber surface using an electrophoretic method. In a conventional contact angle test, a drop of water rapidly penetrated into the nanotube-coated fibermat. The culture test using murine osteoblast-like cells (MC3T3-E1) showed that the cell attachment to the nanotube-coated fibermat at an early stage after seeding was enhanced in comparison with that to the noncoated one. This approach may provide a new method of improving the surface of polymer-based biomaterials.