About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 484692, 5 pages
http://dx.doi.org/10.1155/2012/484692
Research Article

Adsorption Sites of Hydrogen Atom on Pure and Mg-Doped Multi-Walled Carbon Nanotubes

1Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Physics Department, Jamia Millia Islamia University, New Delhi 110025, India

Received 19 May 2012; Accepted 22 July 2012

Academic Editor: Xuedong Bai

Copyright © 2012 A. A. Al-Ghamdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Carpetis, “Estimation of storage costs for large hydrogen storage facilities,” International Journal of Hydrogen Energy, vol. 7, no. 2, pp. 191–203, 1982. View at Scopus
  2. A. Chambers, C. Park, T. K. Baker, and N. M. Rodriguez, “Hydrogen storage in graphite Nanofi bers,” The Journal of Physical Chemistry B, vol. 102, no. 22, pp. 4253–4256, 1998. View at Publisher · View at Google Scholar
  3. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes,” Nature, vol. 386, no. 6623, pp. 377–379, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. Kukkone and M. Shelef, “Hydrogen as an alternative automotive fuel,” in Alternate Fuels, R. M. Bata, Ed., National Research Council and National Academy of Engineering, National Academies Press, Washington, DC, USA, 1992.
  5. G. Thomas, “Hydrogen Storage: state of the art,” in Proceedings of the Basic Energy Sciences Workshop on Basic Research Needs for the Hydrogen Economy, Rockville, Md, USA, May 2003.
  6. M. A. DeLuchi, “Hydrogen vehicles: an evaluation of fuel storage, performance, safety, environmental impacts, and cost,” International Journal of Hydrogen Energy, vol. 14, no. 2, pp. 81–130, 1989. View at Scopus
  7. F. Michel, H. Fieseler, G. Meyer, and F. Theiben, “On-board equipment for liquid hydrogen vehicles,” International Journal of Hydrogen Energy, vol. 23, no. 3, pp. 191–199, 1998. View at Scopus
  8. E. Newson, T. H. Haueter, P. Hottinger, F. von Roth, G. W. H. Scherer, and T. H. Schucan, “Seasonal storage of hydrogen in stationary systems with liquid organic hydrides,” International Journal of Hydrogen Energy, vol. 23, no. 10, pp. 905–909, 1998. View at Scopus
  9. V. N. Verbetsky, S. P. Malyshenko, S. V. Mitrokhin, V. V. Solovei, and Y. F. Shmal'ko, “Metal hydrides: properties and practical applications. Review of the works in CIS-countries,” International Journal of Hydrogen Energy, vol. 23, no. 12, pp. 1165–1177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Kojima, Y. Kawai, S. I. Towata, T. Matsunaga, T. Shinozawa, and M. Kimbara, “Development of metal hydride with high dissociation pressure,” Journal of Alloys and Compounds, vol. 419, no. 1-2, pp. 256–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. W. H. Scholz, “Processes for industrial production of hydrogen and associated environmental effects,” Gas Separation and Purification, vol. 7, no. 3, pp. 131–139, 1993. View at Scopus
  12. L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. 6861, pp. 353–358, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Hirano, K. S. Young, A. Kwabena, and J. A. Schwarz, “The high surface area activated carbon hydrogen storage system,” in Proceedings of the 1st International Conference on New Energy Systems and Conversions, Frontiers Science Series, no. 7, pp. 67–72, Yokohama, Japan, June 1993.
  14. J. Chen and F. Wu, “Review of hydrogen storage in inorganic fullerene-like nanotubes,” Applied Physics A, vol. 78, no. 7, pp. 989–994, 2004. View at Scopus
  15. R. J. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, “Hydrogen storage by carbon materials,” Journal of Power Sources, vol. 159, no. 2, pp. 781–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, “Hydrogen storage in single-walled carbon nanotubes at room temperature,” Science, vol. 286, no. 5442, pp. 1127–1129, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. R. T. Yang, “Hydrogen storage by alkali-doped carbon nanotubes-revisited,” Carbon, vol. 38, no. 4, pp. 623–626, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hirscher, M. Becher, M. Haluska et al., “Are carbon nanostructures an efficient hydrogen storage medium?” Journal of Alloys and Compounds, vol. 356–357, pp. 433–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Zhou, Y. Zhou, and Y. Sun, “Enhanced storage of hydrogen at the temperature of liquid nitrogen,” International Journal of Hydrogen Energy, vol. 29, no. 3, pp. 319–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Nikitin, H. Ogasawara, D. Mann et al., “Hydrogenation of single-walled carbon nanotubes,” Physical Review Letters, vol. 95, no. 22, Article ID 225507, 4 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. R. Muniz, M. Meyyappan, and D. Maroudas, “On the hydrogen storage capacity of carbon nanotube bundles,” Applied Physics Letters, vol. 95, no. 16, Article ID 163111, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Nikitin, X. Li, Z. Zhang, H. Ogasawara, H. Dai, and A. Nilsson, “Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds,” Nano Letters, vol. 8, no. 1, pp. 162–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Han and H. M. Lee, “Adsorption properties of hydrogen on (10,0) single-walled carbon nanotube through density functional theory,” Carbon, vol. 42, no. 11, pp. 2169–2177, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Barone, J. Heyd, and G. E. Scuseria, “Interaction of atomic hydrogen with single-walled carbon nanotubes: a density functional theory study,” The Journal of Chemical Physics, vol. 120, no. 15, pp. 7169–7173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Cabria, M. J. López, and J. A. Alonso, “Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes,” European Physical Journal D, vol. 34, no. 1–3, pp. 279–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. H. Yang, W. H. Shin, J. W. Lee, S. Y. Kim, S. I. Woo, and J. K. Kang, “Interaction of a transition metal atom with intrinsic defects in single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13941–13946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. J. Lachawiec Jr., G. Qi, and R. T. Yang, “Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement,” Langmuir, vol. 21, no. 24, pp. 11418–11424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Zacharia, K. Y. Kim, A. K. M. Fazle Kibria, and K. S. Nahm, “Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles,” Chemical Physics Letters, vol. 412, no. 4–6, pp. 369–375, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. F. H. Yang, A. J. Lachawiec Jr., and R. T. Yang, “Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes,” Journal of Physical Chemistry B, vol. 110, no. 12, pp. 6236–6244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, “Mechanistic study on hydrogen spillover onto graphitic carbon materials,” Journal of Physical Chemistry C, vol. 111, no. 51, pp. 18995–19000, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. L. McAfee and B. Poirier, “Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes,” The Journal of Chemical Physics, vol. 130, no. 6, Article ID 064701, 16 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. McAfee and B. Poirier, “Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes: multiple H-atom adsorbates,” The Journal of Chemical Physics, vol. 134, no. 7, Article ID 074308, 19 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. U. S. Department of Energy, Hydrogen Energy, http://www.hydrogen.energy.gov/.
  34. O. Ermer, “Calculation of molecular properties using force fields. Applications in organic chemistry,” Structure & Bonding, vol. 27, pp. 161–211, 1976. View at Publisher · View at Google Scholar
  35. J. Barriga, B. Coto, and B. Fernandez, “Molecular dynamics study of optimal packing structure of OTS self-assembled monolayers on SiO2 surfaces,” Tribology International, vol. 40, no. 6, pp. 960–966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. View at Scopus