About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 532847, 5 pages
http://dx.doi.org/10.1155/2012/532847
Research Article

Effects of EDTA and Boric Acid on the Morphology of Particles

1National Carbon Fiber Engineering Research Center, Beijing University of Chemical Technology, Beijing 100029, China
2Jilin Petrochemical Co. Ltd., PetroChina, Jilin 132021, China

Received 31 July 2012; Accepted 30 November 2012

Academic Editor: Sung Oh Cho

Copyright © 2012 Xingbo Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. N. Da Silva, M. C. G. Rocha, M. A. R. Moraes, C. A. R. Valente, and F. M. B. Coutinho, “Mechanical and rheological properties of composites based on polyolefin and mineral additives,” Polymer Testing, vol. 21, no. 1, pp. 57–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. G. Rocha, A. H. M. F. T. Silva, F. M. B. Coutinho, and A. L. N. Silva, “Study of composites based on polypropylene and calcium carbonate by experimental design,” Polymer Testing, vol. 24, no. 8, pp. 1049–1053, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. R. R. Fay, “The goldfish ear codes the axis of acoustic particle motion in three dimensions,” Science, vol. 225, no. 4665, pp. 951–954, 1984. View at Scopus
  4. H. Yang, W. Yao, L. Yang et al., “The self-assembly of CaCO3 crystals in the presence of protein,” Journal of Crystal Growth, vol. 311, no. 9, pp. 2682–2688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Altay, T. Shahwan, and M. Tanoǧlu, “Morphosynthesis of CaCO3 at different reaction temperatures and the effects of PDDA, CTAB, and EDTA on the particle morphology and polymorph stability,” Powder Technology, vol. 178, no. 3, pp. 194–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Rudloff and H. Cölfen, “Superstructures of temporarily stabilized nanocrystalline CaCO3 particles: morphological control via water surface tension variation,” Langmuir, vol. 20, no. 3, pp. 991–996, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. L. A. Gower and D. A. Tirrell, “Calcium carbonate films and helices grown in solutions of poly(aspartate),” Journal of Crystal Growth, vol. 191, no. 1-2, pp. 153–160, 1998. View at Scopus
  8. C. A. Orme, A. Noy, A. Wierzbicki et al., “Formation of chiral morphologies through selective binding of amino acids to calcite surface steps,” Nature, vol. 411, no. 6839, pp. 775–779, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Maas, H. Rehage, H. Nebel, and M. Epple, “A detailed study of closed calcium carbonate films at the liquid-liquid interface,” Langmuir, vol. 25, no. 4, pp. 2258–2263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Xie, Y. H. Shen, X. Y. Li et al., “The role of Mg2+ and Mg2+/amino acid in controlling polymorph and morphology of calcium carbonate crystal,” Materials Chemistry and Physics, vol. 101, no. 1, pp. 87–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Gao, P. Huang, K. Wang, R. He, and D. Cui, “Gram-scale synthesis and shape evolution of micro-CaCO3,” Powder Technology, vol. 205, pp. 270–275, 2011.
  12. K. B. Lee, S. B. Park, Y. N. Jang, and S. W. Lee, “Morphological control of CaCO3 films with large area: effect of additives and self-organization under atmospheric conditions,” Journal of Colloid and Interface Science, vol. 355, no. 1, pp. 54–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, “Controlled crystallization of CaCO3 under stearic acid monolayers,” Nature, vol. 334, no. 6184, pp. 692–695, 1988. View at Scopus