About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 582531, 7 pages
http://dx.doi.org/10.1155/2012/582531
Research Article

Single-Molecule Sandwich Immunoassay for Quantification of Alpha-Fetoprotein Based on Evanescent Field-Enhanced Fluorescence Imaging

Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Gyeonggi-do, Yongin-si 446-701, Republic of Korea

Received 2 October 2012; Accepted 7 November 2012

Academic Editor: Haiyan Li

Copyright © 2012 Seungah Lee and Seong Ho Kang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. W. Chan and S. Sell, “Tumor markers,” in Tietz Text Book of Clinical Chemistry, C. A. Burtis and E. R. Ashwood, Eds., pp. 897–927, WB Saunders Company, Philadelphia, Pa, USA, 2nd edition, 1994.
  2. C. M. Sturgeon, “Tumor markers in the laboratory: closing the guideline-practice gap,” Clinical Biochemistry, vol. 34, no. 5, pp. 353–359, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Wilson, “Electrochemical immunosensors for the simultaneous detection of two tumor markers,” Analytical Chemistry, vol. 77, no. 5, pp. 1496–1502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Konry, A. Novoa, Y. Shemer-Avni et al., “Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen,” Analytical Chemistry, vol. 77, no. 6, pp. 1771–1779, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Zuo, S. Li, Z. Guo, J. Zhang, and C. Chen, “Piezoelectric immunosensor for SARS-associated coronavirus in sputum,” Analytical Chemistry, vol. 76, no. 13, pp. 3536–3540, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Kurita, Y. Yokota, Y. Sato, F. Mizutani, and O. Niwa, “On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system,” Analytical Chemistry, vol. 78, no. 15, pp. 5525–5531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Lee, N. P. Cho, J. D. Kim, H. Jung, and S. H. Kang, “An ultra-sensitive nanoarray chip based on single-molecule sandwich immunoassay and TIRFM for protein detection in biologic fluids,” Analyst, vol. 134, no. 5, pp. 933–938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Lee, S. Lee, Y. H. Ko et al., “Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay,” Talanta, vol. 78, no. 2, pp. 608–612, 2009.
  9. H. Yoshima, T. Mizuochi, M. Ishii, and A. Kobata, “Structure of the asparagine-linked sugar chains of α-fetoprotein purified from human ascites fluid,” Cancer Research, vol. 40, no. 11, pp. 4276–4281, 1980. View at Scopus
  10. G. J. Mizejewski, “α-fetoprotein as a biologic response modifier: relevance to domain and subdomain structure,” Proceedings of the Society for Experimental Biology and Medicine, vol. 215, no. 4, pp. 333–362, 1997. View at Scopus
  11. E. Alpert, R. Hershberg, P. H. Schur, and K. J. Isselbacher, “Alpha-fetoprotein in human hepatoma: improved detection in serum, and quantitative studies using a new sensitive technique,” Gastroenterology, vol. 61, no. 2, pp. 137–143, 1971. View at Scopus
  12. X. W. Wang and H. Xie, “Alpha—fetoprotein enhances the proliferation of human hepatoma cells in vitro,” Life Sciences, vol. 64, no. 1, pp. 17–23, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. G. I. Abelev, S. D. Perova, N. I. Khramkova, Z. A. Postnikova, and I. S. Irlin, “Production of embryonal alpha-globulin by transplantable mouse hepatomas,” Transplantation, vol. 1, pp. 174–180, 1963. View at Scopus
  14. M. E. Alpert, J. Uriel, and B. de Nechaud, “Alpha-1 fetoglobulin in the diagnosis of human hepatoma,” The New England Journal of Medicine, vol. 278, no. 18, pp. 984–986, 1968. View at Scopus
  15. L. R. Purves, M. MacNab, E. W. Geddes, and I. Bersohn, “Serum-alpha-foetoprotein and primary hepatic cancer,” The Lancet, vol. 1, no. 7548, pp. 921–922, 1968. View at Scopus
  16. J. B. Smith and D. Todd, “Foetoglobin and primary liver cancer,” The Lancet, vol. 2, no. 7572, p. 833, 1968. View at Scopus
  17. M. C. Kew, “Alpha-fetoprotein,” in Modern Trends in Gastroenterology, A. E. Read, Ed., vol. 5, p. 91, Butterworths, London, UK, 1975.
  18. H. F. Deutsch, “Chemistry and biology of α-fetoprotein,” Advances in Cancer Research, vol. 56, pp. 253–312, 1991. View at Scopus
  19. G. J. Mizejewski, “Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants,” Experimental Biology and Medicine, vol. 226, no. 5, pp. 377–408, 2001. View at Scopus
  20. A. A. Terentiev and N. T. Moldogazieva, “Structural and functional mapping of α-fetoprotein,” Biochemistry, vol. 71, no. 2, pp. 120–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Ruoslahti and M. Seppälä, “Studies of carcino-fetal proteins. 3. Development of a radioimmunoassay for -fetoprotein. Demonstration of -fetoprotein in serum of healthy human adults,” International Journal of Cancer, vol. 8, no. 3, pp. 374–383, 1971. View at Scopus
  22. R. P. Liang, G. H. Yao, L. X. Fan, and J. D. Qiu, “Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein,” Analytica Chimica Acta, vol. 737, no. 6, pp. 22–28, 2012.
  23. S. Inouye and J. Sato, “Purification of histidine-tagged aequorin with a reactive cysteine residue for chemical conjugations and its application for bioluminescent sandwich immunoassays,” Protein Expression and Purification, vol. 83, no. 2, pp. 205–210, 2012.
  24. B. Zhang, D. Tang, B. Liu, H. Chen, Y. Cui, and G. Chen, “GoldMag nanocomposite-functionalized graphene sensing platform for one-step electrochemical immunoassay of alpha-fetoprotein,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 174–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Huang and J. Ren, “Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker,” Analytica Chimica Acta, vol. 686, no. 1-2, pp. 115–120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Bruix, M. Sherman, J. M. Llovet et al., “Clinical management of hepatocellular carcinoma. Conclusions of the barcelona-2000 EASL conference,” Journal of Hepatology, vol. 35, no. 3, pp. 421–430, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Ylikotila, L. Välimaa, M. Vehniäinen, H. Takalo, T. Lövgren, and K. Pettersson, “A sensitive TSH assay in spot-coated microwells utilizing recombinant antibody fragments,” Journal of Immunological Methods, vol. 306, no. 1-2, pp. 104–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Inouye and J. I. Sato, “Comparison of luminescent immunoassays using biotinylated proteins of aequorin, alkaline phosphatase and horseradish peroxidase as reporters,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 12, pp. 3310–3313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Inouye and J. I. Sato, “Recombinant aequorin with a reactive cysteine residue for conjugation with maleimide-activated antibody,” Analytical Biochemistry, vol. 378, no. 1, pp. 105–107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Y. Wu, H. F. Wang, J. T. Chen, and X. P. Yan, “Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles,” Journal of the American Chemical Society, vol. 133, no. 4, pp. 686–688, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Zhang, X. Zhang, H. H. Yan, S. J. Xu, D. H. Tang, and W. L. Fu, “A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor,” Biosensors and Bioelectronics, vol. 23, no. 1, pp. 19–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Ding, F. Zhao, R. Ren, and J. M. Lin, “An electrochemical biosensor for α-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles,” Talanta, vol. 78, no. 3, pp. 1148–1154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. P. Liang, Z. X. Wang, L. Zhang, and J. D. Qiu, “A label-free amperometric immunosensor for alpha-fetoprotein determination based on highly ordered porous multi-walled carbon nanotubes/silica nanoparticles array platform,” Sensors and Actuators B, vol. 166-167, pp. 569–575, 2012.
  34. N. Gan, L. Jia, and L. Zheng, “A novel sandwich electrochemical immunosensor based on the DNA-derived magnetic nanochain probes for alpha-fetoprotein,” Journal of Automated Methods and Management in Chemistry, vol. 2011, Article ID 957805, 7 pages, 2011. View at Publisher · View at Google Scholar
  35. B. Su, J. Tang, J. Huang et al., “Graphene and nanogold-functionalized immunosensing interface with enhanced sensitivity for one-step electrochemical immunoassay of alpha-fetoprotein in human serum,” Electroanalysis, vol. 22, no. 22, pp. 2720–2728, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Liu, M. Han, J. Bao, X. Jiang, and Z. Dai, “CdSe quantum dots as labels for sensitive immunoassay of cancer biomarker proteins by electrogenerated chemiluminescence,” Analyst, vol. 136, no. 24, pp. 5197–5203, 2011.
  37. J. Lin, Y. Zhao, Z. Wei, and W. Wang, “Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica,” Materials Science and Engineering B, vol. 176, no. 18, pp. 1474–1478, 2011.
  38. Y. S. Kim, S. H. Kim, J. K. Seong, B. S. Lee, H. Y. Jeong, and K. S. Song, “Gastric yolk sac tumor: a case report and review of the literature,” Korean Journal of Internal Medicine, vol. 24, no. 2, pp. 143–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Ball, E. Rose, and E. Alpert, “Alpha-fetoprotein levels in normal adults,” American Journal of the Medical Sciences, vol. 303, no. 3, pp. 157–159, 1992. View at Scopus
  40. P. Sizaret, N. Martel, A. Tuyns, and S. Reynaud, “Mean α fetoprotein values of 1,333 males over 15 years by age groups,” Digestion, vol. 15, no. 2, pp. 97–103, 1977. View at Scopus
  41. D. Bader, A. Riskin, O. Vafsi et al., “Alpha-fetoprotein in the early neonatal period—a large study and review of the literature,” Clinica Chimica Acta, vol. 349, no. 1-2, pp. 15–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. X. W. Wang and B. Xu, “Stimulation of tumor-cell growth by alpha-fetoprotein,” International Journal of Cancer, vol. 75, no. 4, pp. 596–599, 1998.
  43. H. Ju, G. Yan, F. Chen, and H. Chen, “Enzyme-linked immunoassay of α-1-fetoprotein in serum by differential pulse voltammetry,” Electroanalysis, vol. 11, no. 2, pp. 124–128, 1999. View at Scopus
  44. P. P. Minghetti, M. E. Harper, E. Alpert, and A. Dugaiczyk, “Chromosomal structure and localization of the human α-fetoprotein gene,” Annals of the New York Academy of Sciences, vol. 417, pp. 1–12, 1983. View at Scopus
  45. D. H. Bellet, J. R. Wands, K. J. Isselbacher, and C. Bohuon, “Serum α-fetoprotein levels in human disease: perspective from a highly specific monoclonal radioimmunoassay,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12, pp. 3869–3873, 1984. View at Scopus
  46. D. W. Chan, M. Kelsten, R. Rock, and D. Bruzek, “Evaluation of a monoclonal immunoenzymometric assay for alpha-fetoprotein,” Clinical Chemistry, vol. 32, no. 7, pp. 1318–1322, 1986. View at Scopus
  47. https://meridianlifescience.com.
  48. L. Mannings, S. Trow, J. Newman, B. Nix, and C. Evans, “Interference in the autoDELFIA hAFP immunoassay and effect on second-trimester Down’s syndrome screening,” Annals of Clinical Biochemistry, vol. 48, no. 5, pp. 438–440, 2011.