About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 592147, 8 pages
http://dx.doi.org/10.1155/2012/592147
Research Article

Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

1Shanghai Engineering Research Center of Magnesium Materials and Applications and National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
2State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3Unité Matériaux Et Transformations (UMET), CNRS UMR 8207, Université Lille 1, 59655 Villeneuve d'Ascq, France

Received 29 August 2012; Accepted 16 October 2012

Academic Editor: Kemin Zhang

Copyright © 2012 Jianxin Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC) analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.