About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 592147, 8 pages
http://dx.doi.org/10.1155/2012/592147
Research Article

Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

1Shanghai Engineering Research Center of Magnesium Materials and Applications and National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
2State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3Unité Matériaux Et Transformations (UMET), CNRS UMR 8207, Université Lille 1, 59655 Villeneuve d'Ascq, France

Received 29 August 2012; Accepted 16 October 2012

Academic Editor: Kemin Zhang

Copyright © 2012 Jianxin Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Y. Shao, Y. T. Wang, H. R. Xu, et al., “Preparation of Mg-based hydrogen storage materials from metal nanoparticles,” Journal of Alloys and Compounds, vol. 465, no. 1-2, pp. 527–533, 2000. View at Publisher · View at Google Scholar
  2. T. Z. Si, D. M. Liu, and Q. A. Zhang, “Microstructure and hydrogen storage properties of the laser sintered Mg2Ni alloy,” International Journal of Hydrogen Energy, vol. 32, no. 18, pp. 4912–4916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. X. Zou, X. Q. Zeng, Y. J. Ying, P. Stephane, and W. J. Ding, “Preparation and hydrogen sorption properties of a nano-structured Mg Based Mg-La-O composite,” International Journal of Hydrogen Energy, vol. 37, no. 17, pp. 13067–13073, 2012. View at Publisher · View at Google Scholar
  4. N. Hanada, T. Ichikawa, and H. Fujii, “Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling,” Journal of Alloys and Compounds, vol. 404–406, pp. 716–719, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. T. B. Massalski, Ed., Binary Alloy Phase Diagram, American Society for Metals, 1986.
  6. A. A. Nayeb-Hashemi and J. B. Clark, “The Mg−Ni (Magnesium-Nickel) system,” Journal of Phase Equilibria, vol. 6, no. 3, pp. 238–244, 1985. View at Publisher · View at Google Scholar
  7. C. C. Koch, “Synthesis of nanostructured materials by mechanical milling: problems and opportunities,” Nanostructured Materials, vol. 9, no. 1–8, pp. 13–22, 1997. View at Scopus
  8. J. Huot, H. Enoki, and E. Akiba, “Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1,” Journal of Alloys and Compounds, vol. 453, no. 1-2, pp. 203–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Liu, H. Y. Shao, and X. G. Li, “Oxidation behaviour of Fe3Al nanoparticles prepared by hydrogen plasma-metal reaction,” Nanotechnology, vol. 14, no. 5, pp. 542–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. F. Bisson and C. Moreau, “Effect of direct-current plasma fluctuations on in-flight particle parameters: part II,” Journal of Thermal Spray Technology, vol. 12, no. 2, pp. 258–264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Ohno and M. Uda, “Generation rate of ultrafine metal particles in “hydrogen plasma-metal” reaction,” Journal of the Japan Institute of Metals, vol. 48, no. 6, pp. 640–646, 1984. View at Scopus
  12. H. Y. Shao, H. R. Xu, Y. T. Wang, and X. G. Li, “Preparation and hydrogen storage properties of Mg2Ni intermetallic nanoparticles,” Nanotechnology, vol. 15, no. 3, pp. 269–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Y. Shao, T. Liu, X. G. Li, and L. F. Zhang, “Preparation of Mg2Ni intermetallic compound from nanoparticles,” Scripta Materialia, vol. 49, no. 6, pp. 595–599, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen, “Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review,” International Journal of Energy Research, vol. 31, no. 6-7, pp. 637–663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Liang, S. Boily, J. Huot, A. V. Neste, and R. Schulz, “Hydrogen absorption properties of a mechanically milled Mg-50 wt.% LaNi5 composite,” Journal of Alloys and Compounds, vol. 268, no. 1-2, pp. 302–307, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Reilly and R. H. Wiswall, “Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4,” Inorganic Chemistry, vol. 7, no. 11, pp. 2254–2256, 1968. View at Scopus
  17. T. R. Jensen, A. Andreasen, T. Vegge et al., “Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction,” International Journal of Hydrogen Energy, vol. 31, no. 14, pp. 2052–2062, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Y. Shao, Y. T. Wang, H. R. Xu, and X. G. Li, “Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction,” Materials Science and Engineering B, vol. 110, no. 2, pp. 221–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Li, T. Akiyama, and J. I. Yagi, “Reaction mechanism of hydriding combustion synthesis of Mg2NiH4,” Intermetallics, vol. 7, no. 6, pp. 671–677, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. K. F. Aguey-Zinsou, J. R. Ares Fernandez, T. Klassen, and R. Bormann, “Effect of Nb2O5 on MgH2 properties during mechanical milling,” International Journal of Hydrogen Energy, vol. 32, no. 13, pp. 2400–2407, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Barkhordarian, T. Klassen, and R. Bormann, “Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst,” Scripta Materialia, vol. 49, no. 3, pp. 213–217, 2003. View at Publisher · View at Google Scholar · View at Scopus