About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 607870, 7 pages
http://dx.doi.org/10.1155/2012/607870
Research Article

Controlled Synthesis of Manganese Dioxide Nanostructures via a Facile Hydrothermal Route

Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, 94300 Kota Samarahan, Malaysia

Received 4 October 2011; Accepted 5 December 2011

Academic Editor: Arava Leela Mohana Reddy

Copyright © 2012 Suh Cem Pang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Subramanian, H. Zhu, R. Vajtai, P. M. Ajayan, and B. Wei, “Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures,” Journal of Physical Chemistry B, vol. 109, no. 43, pp. 20207–20214, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. S. F. Chin, S. C. Pang, and M. A. Anderson, “Self-assembled manganese dioxide nanowires as electrode materials for electrochemical capacitors,” Materials Letters, vol. 64, no. 24, pp. 2670–2672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Advanced Functional Materials, vol. 16, no. 4, pp. 549–555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. C. Pang and M. A. Anderson, “Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films,” Journal of Materials Research, vol. 15, no. 10, pp. 2096–2106, 2000. View at Scopus
  5. S. C. Pang, M. A. Anderson, and T. W. Chapman, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide,” Journal of the Electrochemical Society, vol. 147, no. 2, pp. 444–450, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Chin, S. C. Pang, and M. A. Anderson, “Material and electrochemical characterization of tetrapropylammonium manganese oxide thin films as novel electrode materials for electrochemical capacitors,” Journal of the Electrochemical Society, vol. 149, no. 4, pp. A379–A384, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. F. Chin and S. C. Pang, “Tetrapropylammonium-manganese oxide/polypyrrole hybrid nanocomposite thin films as novel electrode materials for supercapacitors,” Materials Chemistry and Physics, vol. 124, no. 1, pp. 29–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Xu, B. Li, H. Du, F. Kang, and Y. Zeng, “Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method,” Journal of Power Sources, vol. 180, no. 1, pp. 664–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Subramanian, H. Zhu, and B. Wei, “Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte,” Chemical Physics Letters, vol. 453, no. 4–6, pp. 242–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Yuan, X. Wang, Y. Wang, and J. Hu, “Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route,” Electrochimica Acta, vol. 54, no. 3, pp. 1021–1026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Zolfaghari, F. Ataherian, M. Ghaemi, and A. Gholami, “Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method,” Electrochimica Acta, vol. 52, no. 8, pp. 2806–2814, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Yan, P. Yan, S. Cheng et al., “Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method,” Crystal Growth and Design, vol. 9, no. 1, pp. 218–222, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Zhang, Z. H. Liu, X. Tang, J. Wang, and K. Ooi, “Synthesis and characterization of β-MnO2 single crystals with novel tetragonous morphology,” Materials Research Bulletin, vol. 42, no. 8, pp. 1432–1439, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Wang and Y. Li, “Rational synthesis of α-MnO2 single-crystal nanorods,” Chemical Communications, no. 7, pp. 764–765, 2002. View at Scopus
  15. X. Zhang, W. Yang, J. Yang, and D. G. Evans, “Synthesis and characterization of α-MnO2 nanowires: self-assembly and phase transformation to β-MnO2 microcrystals,” Journal of Crystal Growth, vol. 310, no. 3, pp. 716–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Wang and Y. Li, “Synthesis and formation mechanism of manganese dioxide nanowires/nanorods,” Chemistry—A European Journal, vol. 9, no. 1, pp. 300–306, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. N. DeGuzman, Y. F. Shen, E. J. Neth et al., “Synthesis and characterization of Octahedral Molecular Sieves (OMS-2) having the hollandite structure,” Chemistry of Materials, vol. 6, no. 6, pp. 815–821, 1994. View at Scopus
  18. J. Wu, H. Zhang, X. Ma et al., “Synthesis and characterization of single crystalline MnOOH and MnO2 nanorods by means of the hydrothermal process assisted with CTAB,” Materials Letters, vol. 60, no. 29-30, pp. 3895–3898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. T. D. Xiao, P. R. Strutt, M. Benaissa, H. Chen, and B. H. Kear, “Synthesis of high active-site density nanofibrous MnO2-base materials with enhanced permeabilities,” Nanostructured Materials, vol. 10, no. 6, pp. 1051–1061, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Jiang, T. Huang, J. Liu, J. Zhuang, and A. Yu, “A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode,” Electrochimica Acta, vol. 54, no. 11, pp. 3047–3052, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Dong, H. Yang, K. He, S. Song, and A. Zhang, “β-MnO2 nanowires: a novel ozonation catalyst for water treatment,” Applied Catalysis B: Environmental, vol. 85, no. 3-4, pp. 155–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Y. Yuan, Z. Zhang, G. Du, T. Z. Ren, and B. L. Su, “A simple method to synthesise single-crystalline manganese oxide nanowires,” Chemical Physics Letters, vol. 378, no. 3-4, pp. 349–353, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Tang, X. Tian, C. Yang, Z. Pi, and Q. Han, “Facile synthesis of α-MnO2 nanorods for high-performance alkaline batteries,” Journal of Physics and Chemistry of Solids, vol. 71, no. 3, pp. 258–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Wang and Y. Li, “Synthesis and formation mechanism of manganese dioxide nanowires/nanorods,” Chemistry—A European Journal, vol. 9, no. 1, pp. 300–306, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. Y. Yang and C. Huang, “Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior,” Journal of Solid State Electrochemistry, vol. 14, no. 7, pp. 1293–1301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. M. de Wolff, “Interpretation of some γ-MnO2 diffraction patterns,” Acta Crystallograhica, vol. 12, pp. 341–345, 1959.