About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 612420, 9 pages
http://dx.doi.org/10.1155/2012/612420
Research Article

Gas Sensing Properties and Mechanism of Nano-SnO2-Based Sensor for Hydrogen and Carbon Monoxide

State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China

Received 17 September 2012; Revised 27 October 2012; Accepted 4 November 2012

Academic Editor: Wen Zeng

Copyright © 2012 Weigen Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Xiong, C. X. Sun, R. J. Liao, J. Li, and L. Du, “Study on kernel-based possibilistic clustering and dissolved gas analysis for fault diagnosis of power transformer,” Proceedings of the Chinese Society of Electrical Engineering, vol. 25, no. 20, pp. 162–166, 2005. View at Scopus
  2. N. Y. Peng, X. S. Wen, Y. Wang, J. B. Chen, and X. Z. Chai, “Potential fault diagnosis method based on linear classifier for oil-immersed transformer,” Proceedings of the Chinese Society of Electrical Engineering, vol. 24, no. 6, pp. 147–151, 2004. View at Scopus
  3. W. G. Chen, Y. X. Yun, C. Pan, and C. X. Sun, “Analysis of infrared absorption properties of dissolved gases in transformer oil,” Proceedings of the Chinese Society of Electrical Engineering, vol. 28, no. 16, pp. 148–153, 2008. View at Scopus
  4. L. J. Zhou, G. N. Wu, P. Tang, H. L. Wang, and C. Su, “Model of semiconductor gas sensor for monitoring dissolved gases in insulation oil,” Automation of Electric Power Systems, vol. 30, no. 10, pp. 75–79, 2006. View at Scopus
  5. A. Cirera, A. Cabot, A. Cornet, and J. R. Morante, “CO–CH4 selectivity enhancement by in situ Pd-catalysed microwave SnO2 nanoparticles for gas detectors using active filter,” Sensors and Actuators B, vol. 78, no. 1–3, pp. 151–160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Ionescu, A. Vancu, C. Moise, and A. Tomescu, “Role of water vapour in the interaction of SnO2 gas sensors with CO and CH4,” Sensors and Actuators B, vol. 61, no. 1, pp. 39–42, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Shimizu, T. Maekawa, Y. Nakamura, and M. Egashira, “Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2-based sensors,” Sensors and Actuators B, vol. B46, no. 3, pp. 163–168, 1998. View at Scopus
  8. S. D. Choi and D. D. Lee, “CH4 sensing characteristics of K-, Ca-, Mg impregnated SnO2 sensors,” Sensors and Actuators B, vol. 77, no. 1-2, pp. 335–338, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chemistry of Materials, vol. 17, no. 13, pp. 3513–3518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. R. Cássia-Santos, V. C. Sousa, M. M. Oliveira et al., “Recent research developments in SnO2-based varistors,” Materials Chemistry and Physics, vol. 90, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Franke, T. J. Koplin, and U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?” Small, vol. 2, no. 1, pp. 36–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sauvan and C. Pijolat, “Selectivity improvement of SnO2 films by superficial metallic films,” Sensors and Actuators B, vol. 58, no. 1–3, pp. 295–301, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. R. M. Prasad, A. Gurlo, R. Riedel, M. Hübner, N. Barsan, and U. Weimar, “Microporous ceramic coated SnO2 sensors for hydrogen and carbon monoxide sensing in harsh reducing conditions,” Sensors and Actuators B, vol. 149, no. 1, pp. 105–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Köck, A. Tischner, T. Maier et al., “Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection,” Sensors and Actuators B, vol. 138, no. 1, pp. 160–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Zhang, L. Liu, Q. Qi, S. Li, and G. Lu, “Development of microstructure In/Pd-doped SnO2 sensor for low-level CO detection,” Sensors and Actuators B, vol. 139, no. 2, pp. 287–291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Qi, T. Zhang, X. Zheng et al., “Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference,” Sensors and Actuators B, vol. 134, no. 1, pp. 36–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Quaranta, R. Rella, P. Siciliano et al., “Novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature,” Sensors and Actuators B, vol. 58, no. 1–, pp. 350–355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Zeng, T. M. Liu, D. J. Liu, and E. J. Han, “Hydrogen sensing and mechanism of M-doped SnO2 (M = Cr3+, Cu2+ and Pd2+) nanocomposite,” Sensors and Actuators B, vol. 160, no. 1, pp. 455–462, 2011.
  19. C. W. Zhang, P. J. Wang, and F. Li, “First-principles study on surface magnetism in Co-doped (110) SnO2 thin film,” Solid State Sciences, vol. 13, no. 8, pp. 1608–1611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Hübner, R. G. Pavelko, N. Barsan, and U. Weimar, “Influence of oxygen backgrounds on hydrogen sensing with SnO2 nanomaterials,” Sensors and Actuators B, vol. 154, no. 2, pp. 264–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Zhang, Z. Li, L. Liu et al., “Enhancement of hydrogen monitoring properties based on Pd-SnO2 composite nanofibers,” Sensors and Actuators B, vol. 147, no. 1, pp. 111–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Wang, Q. Mu, G. Wang, and Z. Zhou, “Sensing characterization to NH3 of nanocrystalline Sb-doped SnO2 synthesized by a nonaqueous sol-gel route,” Sensors and Actuators B, vol. 145, no. 2, pp. 847–853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Oviedo and M. J. Gillan, “Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations,” Surface Science, vol. 463, no. 2, pp. 93–101, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. J. B. L. Martins, E. Longo, J. Andrés, and C. A. Taft, “Theoretical study of cluster models and molecular hydrogen interaction with SnO2 [110] surface,” Journal of Molecular Structure: THEOCHEM, vol. 335, no. 1–3, pp. 167–174, 1995. View at Scopus
  25. M. Calatayud, J. Andrés, and A. Beltrán, “Theoretical analysis of adsorption and dissociation of CH3OH on the stoichiometric SnO2(110) surface,” Surface Science, vol. 430, no. 1, pp. 213–222, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Oviedo and M. J. Gillan, “First-principles study of the interaction of oxygen with the SnO2 (110) surface,” Surface Science, vol. 490, no. 3, pp. 221–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Oviedo and M. J. Gillan, “Reconstructions of strongly reduced SnO2 (110) studied by first-principles methods,” Surface Science, vol. 513, no. 1, pp. 26–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Ciriaco, L. Cassidei, M. Cacciatore, and G. Petrella, “First principle study of processes modifying the conductivity of substoichiometric SnO2 based materials upon adsorption of CO from atmosphere,” Chemical Physics, vol. 303, no. 1-2, pp. 55–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Mäki-Jaskari, T. T. Rantala, and V. V. Golovanov, “Computational study of charge accumulation at SnO2 (110) surface,” Surface Science, vol. 577, no. 2-3, pp. 127–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. W. Zhang, P. J. Wang, and F. Li, “First-principles study on surface magnetism in Co-doped (110) SnO2 thin film,” Solid State Sciences, vol. 13, no. 8, pp. 1608–1611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. T. Rantala, T. S. Rantala, and V. Lantto, “Electronic structure of SnO2 (110) surface,” Materials Science in Semiconductor Processing, vol. 3, no. 1-2, pp. 103–107, 2000. View at Scopus
  32. Z. Wen, L. Tian-Mo, and L. Xiao-Fei, “Hydrogen sensing properties of low-index surfaces of SnO2 from first-principles,” Physica B, vol. 405, no. 16, pp. 3458–3462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. V. N. Mishra and R. P. Agarwal, “Sensitivity, response and recovery time of SnO2 based thick-film sensor array for H2, CO, CH4 and LPG,” Microelectronics Journal, vol. 29, no. 11, pp. 861–874, 1998. View at Scopus
  34. N. Yamazoe, G. Sakai, and K. Shimanoe, “Oxide semiconductor gas sensors,” Catalysis Surveys from Asia, vol. 7, no. 1, pp. 63–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. I. J. Kim, S. D. Han, I. Singh, H. D. Lee, and J. S. Wang, “Sensitivity enhancement for CO gas detection using a SnO2-CeO2-PdOx system,” Sensors and Actuators B, vol. 107, no. 2, pp. 825–830, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Lu, W. Ma, J. Gao, and J. Li, “Diffusion-reaction theory for conductance response in metal oxide gas sensing thin films,” Sensors and Actuators B, vol. 66, no. 1–3, pp. 228–231, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, and T. Kikuta, “Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires,” Journal of Alloys and Compounds, vol. 488, no. 1, pp. L21–L25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, and G. W. Yang, “Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen,” Journal of Physical Chemistry C, vol. 112, no. 17, pp. 6643–6647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Srivastava and K. Jain, “Study on ZnO-doped tin oxide thick film gas sensors,” Materials Chemistry and Physics, vol. 105, no. 2-3, pp. 385–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. B. Xue and Z. A. Tang, “Density functional study of the interaction of CO with undoped and Pd doped SnO2 (110) surface,” Sensors and Actuators B, vol. 138, no. 1, pp. 108–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Wu, J. Zhang, Y. Wu, Q. Li, K. Chou, and X. Bao, “Adsorption and dissociation of hydrogen on MgO surface: a first-principles study,” Journal of Alloys and Compounds, vol. 480, no. 2, pp. 788–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Trani, M. Causà, D. Ninno, G. Cantele, and V. Barone, “Density functional study of oxygen vacancies at the SnO2 surface and subsurface sites,” Physical Review B, vol. 77, no. 24, Article ID 245410, pp. 245–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. C. Lee, H. Huang, O. K. Tan, and M. S. Tse, “Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films,” Sensors and Actuators B, vol. 132, no. 1, pp. 239–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. J. D. Prades, A. Cirera, J. R. Morante, J. M. Pruneda, and P. Ordejón, “Ab initio study of NOx compounds adsorption on SnO2 surface,” Sensors and Actuators B, vol. 126, no. 1, pp. 62–67, 2007. View at Publisher · View at Google Scholar · View at Scopus