About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 708519, 9 pages
http://dx.doi.org/10.1155/2012/708519
Research Article

Phototriggered Production of Reactive Oxygen Species by TIO2 Nanospheres and Rods

1DFG-Centre for Functional Nanostructures, Kalrsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße1a, 76131 Karlsruhe, Germany
2Laboratorium für Elektronmikriskopie, Karlsruhe Institute of Technology (KIT), Engessestrasse, 76131 Karlsruhe, Germany

Received 5 March 2012; Revised 20 September 2012; Accepted 25 September 2012

Academic Editor: Grégory Guisbiers

Copyright © 2012 Bianca Geiseler et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Hao, G. C. Schatz, and J. T. Hupp, “Synthesis and optical properties of anisotropic metal nanoparticles,” Journal of Fluorescence, vol. 14, no. 4, pp. 331–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Peng, L. Manna, W. Yang, et al., “Shape control of CdSe nanocrystals,” Nature, vol. 404, pp. 59–61, 2000. View at Publisher · View at Google Scholar
  3. Y. H. Kim, Y. W. Jun, B. H. Jun, S. M. Lee, and J. Cheon, “Sterically induced shape and crystalline phase control of GaP nanocrystals,” Journal of the American Chemical Society, vol. 124, no. 46, pp. 13656–13657, 2002. View at Publisher · View at Google Scholar
  4. Y. Xia, Y. Sun, Y. Wu, et al., “One-dimensional nanostructures: synthesis, characterization, and applications,” Advanced Materials, vol. 15, no. 5, pp. 353–389, 2003. View at Publisher · View at Google Scholar
  5. Z. Wang, S. Zong, J. Yang, C. Song, J. Li, and Y. Cui, “One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity,” Biosensors and Bioelectronics, vol. 26, no. 1, pp. 241–247, 2010. View at Publisher · View at Google Scholar
  6. A. R. A. Loiudice, L. De Marco, M. R. Belviso, G. Caputo, P. D. Cozzoli, and G. Gigli, “Organic photovoltaic devices with colloidal TiO2 nanorods as key functional components,” Physical Chemistry Chemical Physics, vol. 14, pp. 3987–3995. View at Publisher · View at Google Scholar
  7. S. E. Dobrovolskaia, “Immunological properties of engineered nanomaterials,” Nature Nanotechnology, vol. 2, pp. 469–478, 2007. View at Publisher · View at Google Scholar
  8. H. K. Y. Zhu, L. Xu, W. Ma, et al., “Gold nanorod assembly based approach to toxin detection by SERS,” Journal of Materials Chemistry, vol. 22, pp. 2387–2391, 2012. View at Publisher · View at Google Scholar
  9. S. J. J. Stone and D. Wright, “Wiley interdisciplinary reviews: nanomedicine and nanobiotechnology,” Nanobiotechnology, vol. 3, no. 1, pp. 100–109, 2011.
  10. M. P. R. Wang, L. Fruk, D. Hu, and D. M. Schaadt, “Nanoparticles and efficiency enhancement in plasmonic solar cells,” Journal of Nanoelectronics and Optoelectronics, vol. 7, pp. 322–327.
  11. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” Journal of the American Chemical Society, vol. 128, no. 6, pp. 2115–2120, 2006. View at Publisher · View at Google Scholar
  12. Q. W. L. Tong, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochemistry and Photobiology, vol. 85, no. 1, pp. 21–32. View at Publisher · View at Google Scholar
  13. C. J. Murphy, A. M. Gole, S. E. Hunyadi, et al., “Chemical sensing and imaging with metallic nanorods,” Chemical Communications, no. 5, pp. 544–557. View at Publisher · View at Google Scholar
  14. N. M. Dimitrijevic, Z. V. Saponjic, B. M. Rabatic, and T. Rajh, “Assembly and charge transfer in hybrid TiO2 architectures using biotin−avidin as a connector,” Journal of the American Chemical Society, vol. 127, no. 5, pp. 1344–1345, 2005. View at Publisher · View at Google Scholar
  15. P. D. Cozzoli, A. Kornowski, and H. Weller, “Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 Nanorods,” Journal of the American Chemical Society, vol. 125, no. 47, pp. 14539–14548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, “Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachmentv mechanism,” Journal of the American Chemical Society, vol. 126, no. 45, pp. 14943–14949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Zhu, J. Shi, Z. Zhang, C. Zhang, and X. Zhang, “Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide,” Analytical Chemistry, vol. 74, no. 1, pp. 120–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. B. L. Bischoff and M. A. Anderson, “Peptization process in the sol-gel preparation of porous anatase (TiO2),” Chemistry of Materials, vol. 7, no. 10, pp. 1772–1778, 1995. View at Scopus
  19. H. Y. Zhu, Y. Lan, X. P. Gao et al., “Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions,” Journal of the American Chemical Society, vol. 127, no. 18, pp. 6730–6736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. F. Schwarz, N. J. Turro, S. H. Bossmann, A. M. Braun, A. M. A. Abdel Wahab, and H. Dürr, “A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions,” Journal of Physical Chemistry B, vol. 101, no. 36, pp. 7127–7134, 1997. View at Scopus
  21. M. K. K. Matsui, M. Segawa, S. Y. Hwang, T. Tanaka, C. Ogino, and A. Kondo, “Biofunctional TiO2 nanoparticle-mediated photokilling of cancer cells using UV irradiation,” MedChemComm, vol. 1, no. 3, pp. 209–211, 2011. View at Publisher · View at Google Scholar
  22. Y. Luo, Y. Tian, and Q. Rui, “Electrochemical assay of superoxide based on biomimetic enzyme at highly conductive TiO2 nanoneedles: from principle to applications in living cells,” Chemical Communications, no. 21, pp. 3014–3016, 2009. View at Publisher · View at Google Scholar
  23. K. Y. K. Kakinoki, R. Teraoka, M. Otsuka, and Y. Matsuda, “Effect of relative humidity on the photocatalytic Titanium dioxide and photostability of famotidine,” Journal of Pharmaceutical Sciences, vol. 93, no. 3, pp. 582–589, 2004. View at Publisher · View at Google Scholar
  24. R. W. C. M. Sayes, P. A. Kurian, Y. Liu, et al., “Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells,” The Journal of Toxicological Sciences, vol. 92, no. 1, pp. 174–185, 2006. View at Publisher · View at Google Scholar
  25. J. R. Gurr, A. S. Wang, C. H. Chen, and K. Y. Jan, “Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells,” Toxicology, vol. 213, no. 1-2, pp. 66–73, 2005. View at Publisher · View at Google Scholar
  26. H. Turkez and F. Geyikoglu, “An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes,” Toxicology and Industrial Health, vol. 23, no. 1, pp. 19–23, 2007. View at Publisher · View at Google Scholar
  27. J. J. Wang, B. J. Sanderson, and H. Wang, “Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells,” Mutation Research, vol. 628, no. 2, pp. 99–106, 2007.
  28. T. J. Dougherty, C. J. Gomer, B. W. Henderson, et al., “Photodynamic therapy,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 889–905, 1998. View at Publisher · View at Google Scholar
  29. Z. W. Chen and J. Zhang, “Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment,” Journal of Nanoscience and Nanotechnology,, vol. 6, no. 4, pp. 1159–1166, 2006. View at Publisher · View at Google Scholar
  30. P. Wang, D. Wang, H. Li, T. Xie, H. Wang, and Z. Du, “A facile solution-phase synthesis of high quality water-soluble anatase TiO2 nanocrystals,” Journal of Colloid and Interface Science, vol. 314, no. 1, pp. 337–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. W. Seo, H. Chung, M. Y. Kim, J. Lee, I. H. Choi, and J. Cheon, “Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment,” Small, vol. 3, no. 5, pp. 850–853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Fruk, V. Rajendran, M. Spengler, and C. M. Niemeyer, “Light-induced triggering of peroxidase activity using quantum dots,” ChemBioChem, vol. 8, no. 18, pp. 2195–2198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. C. Gammer, C. Rentenberger, and H. P. Karnthaler, “Quantitative local profile analysis of nanomaterials by electron diffraction,” Scripta Materialia, vol. 63, no. 3, pp. 312–315, 2010. View at Publisher · View at Google Scholar
  34. J. W. Seo, Y. W. Jun, S. J. Ko, and J. Cheon, “In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5389–5391, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. X. L. Ge, M. Sun, and H. Fang, “Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols,” Journal of Sol-Gel Science and Technology, vol. 38, no. 1, pp. 47–53, 2006. View at Publisher · View at Google Scholar
  36. P. J. Thistlethwaite and M. S. Hook, “Diffuse reflectance Fourier transform infrared study of the adsorption of oleate/oleic acid onto titania,” Langmuir, vol. 16, no. 11, pp. 4993–4998, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Malisova, S. Tosatti, M. Textor, K. Gademann, and S. Zürcher, “Poly(ethylene glycol) adlayers immobilized to metal oxide substrates through catechol derivatives: influence of assembly conditions on formation and stability,” Langmuir, vol. 26, no. 6, pp. 4018–4026, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Geiseler and L. Fruk, “Bifunctional catechol based linkers for modification of TiO2 surfaces,” Journal of Materials Chemistry, vol. 22, no. 2, pp. 735–741, 2012. View at Publisher · View at Google Scholar
  39. N. M. Dimitrijevic, E. Rozhkova, and T. Rajh, “Dynamics of localized charges in dopamine-modified TiO and their effect on the formation of reactive oxygen species,” Journal of the American Chemical Society, vol. 131, no. 8, pp. 2893–2899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Hesse, H. Meier, and B. Zeeh, Spektroskopischen Methoden in der Organischen Chemie, Stuttgart, New York, NY, USA, 1991.
  41. M. Nara, H. Torri, and M. Tasumi, “Correlation between the vibrational frequencies of the carboxylate group and the types of its coorination to a metal ion: an ab initio Molecular Orbital Study,” Journal of Physical Chemistry, vol. 100, no. 51, pp. 19812–19817, 1999. View at Publisher · View at Google Scholar
  42. Y. Liu, “Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation,” The Journal of Physical Chemistry B, vol. 103, pp. 2480–2486, 1999.
  43. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972. View at Publisher · View at Google Scholar · View at Scopus
  44. B. I. Ipe and C. M. Niemeyer, “Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts,” Angewandte Chemie International Edition, vol. 45, no. 3, pp. 504–507, 2006. View at Publisher · View at Google Scholar
  45. S. J. Sigg, F. Seidi, K. Renggli, T. B. Silva, G. Kali, and N. Bruns, “Horseradish peroxidase as a catalyst for atom transfer radical polymerization,” Macromolecular Rapid Communications, vol. 32, no. 21, pp. 1710–1715, 2011. View at Publisher · View at Google Scholar
  46. M. Tarpey, D. Wink, and M. Grisham, “Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations,” American Journal of Physiology, vol. 286, no. 3, pp. R431–R444, 2004. View at Publisher · View at Google Scholar
  47. Q. X. J. Zhang, Z. Feng, M. Li, and C. Li, “Importance of the relationship between surface phases and photocatalytic activity of TiO2,” Angewandte Chemie International Edition, vol. 47, no. 9, pp. 1766–1769. View at Publisher · View at Google Scholar
  48. A. Welte, C. W. A. Waldauf, C. Brabec, and P. J. Wellmann, “Application of optical absorbance for the investigation of electronic and structural properties of sol-gel processed TiO2 films,” Thin Solid Films, vol. 516, no. 20, pp. 7256–7259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. V. S. N. M. Dimitrijevic, B. M. Rabatic, O. G. Poluektov, and T. Rajh, “Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR study,” The Journal of Physical Chemistry C, vol. 111, no. 40, pp. 14597–14601, 2007. View at Publisher · View at Google Scholar
  50. K. J. Reszka, B. A. Wagner, C. P. Burns, and B. E. Britigan, “Effects of peroxidase substrates on the Amplex red/peroxidase assay: antioxidant properties of anthracyclines,” Analytical Biochemistry, vol. 342, no. 2, pp. 327–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Serpone, D. Lawless, and R. Khairutdinov, “Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor?” Journal of Physical Chemistry, vol. 99, no. 45, pp. 16646–16654, 1995. View at Scopus
  52. M. Suthanthiran, S. D. Solomon, and P. S. Williams, “Hydroxyl radical scavengers inhibit human natural killer cell activity,” Nature, vol. 307, no. 5948, pp. 276–278, 1984. View at Scopus
  53. C. Luga, J. R. Alvarez-Idaboy, and A. Vivier-Bunge, “ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments,” The Journal of Physical Chemistry B, vol. 115, no. 42, pp. 12234–12246, 2011. View at Publisher · View at Google Scholar
  54. Z. Yang, L. D. Asico, P. Yu et al., “D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure,” American Journal of Physiology, vol. 290, no. 1, pp. R96–R104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Chen, C. Wersinger, and A. Sidhu, “Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity,” Journal of Biological Chemistry, vol. 278, no. 30, pp. 28089–28100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. C. L. H and G.C. Yen, “Antioxidant effects of dopamine and related compounds,” Bioscience, Biotechnology, and Biochemistry, vol. 61, no. 10, pp. 1646–1649, 1997. View at Publisher · View at Google Scholar
  57. C. Luga, J. R. Alvarez-Idaboy, and A. Vivier-Bunge, “ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments,” The Journal of Physical Chemistry B, vol. 115, no. 42, pp. 12234–12246, 2011. View at Publisher · View at Google Scholar