About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 743236, 7 pages
http://dx.doi.org/10.1155/2012/743236
Research Article

Surface Modification of LiMn2O4 for Lithium Batteries by Nanostructured LiFePO4 Phosphate

Department of Materials Engineering, Tarbiat Modares University, P.O. Box 4838-141, Tehran, Iran

Received 17 May 2012; Revised 31 August 2012; Accepted 31 August 2012

Academic Editor: Christian Brosseau

Copyright © 2012 B. Sadeghi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Fu, H. Liu, C. Li et al., “Surface modifications of electrode materials for lithium ion batteries,” Solid State Sciences, vol. 8, no. 2, pp. 113–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. W. Lee, H. S. Kim, and S. I. Moon, “Effects on surface modification of spinel LiMn2O4 material for lithium-ion batteries,” Materials Science and Engineering B, vol. 123, no. 3, pp. 234–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Li and Y. Xu, “Enhanced cycling performance of spinel LiMn2O4 coated with ZnMn2O4 shell,” Journal of Solid State Electrochemistry, vol. 12, no. 7-8, pp. 851–855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Xia, N. Kumada, and M. Yoshio, “Enhancing the elevated temperature performance of Li/LiMn2O4 cells by reducing LiMn2O4 surface area,” Journal of Power Sources, vol. 90, no. 2, pp. 135–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Gummow, A. de Kock, and M. M. Thackeray, “Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells,” Solid State Ionics, vol. 69, no. 1, pp. 59–67, 1994. View at Scopus
  6. J. M. Tarascon, F. Coowar, G. Amatucci, F. K. Shokoohi, and D. Guy-omard, “Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4,” Journal of The Electrochemical Society, vol. 141, pp. 1421–1427, 1994. View at Publisher · View at Google Scholar
  7. T. F. Yi, Y. R. Zhu, X. D. Zhu, J. Shu, C. B. Yue, and A. N. Zhou, “A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery,” Ionics, vol. 15, no. 6, pp. 779–784, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. M. Kannan and A. Manthiram, “Surface/chemically modified LiMn2O4 cathodes for lithium-ion batteries,” Electrochemical and Solid-State Letters, vol. 5, no. 7, pp. A167–A169, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Ein-Eli, R. C. Urian, W. Wen, and S. Mukerjee, “Low temperature performance of copper/nickel modified LiMn2O4 spinels,” Electrochimica Acta, vol. 50, no. 9, pp. 1931–1937, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Jang, Y. Shin, and S. Oh, “Dissolution of spinel oxides and capacity losses in 4 V Li / LixMn2O4 Cells,” Journal of The Electrochemical Society, vol. 143, pp. 2204–2211, 1996. View at Publisher · View at Google Scholar
  11. Y. J. Park, J. G. Kim, M. K. Kim, H. G. Kim, H. T. Chung, and Y. Park, “Electrochemical properties of LiMn2O4 thin films: suggestion of factors for excellent rechargeability,” Journal of Power Sources, vol. 87, no. 1, pp. 69–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Thackeray, P. J. Johnson, L. A. De Picciotto, P. G. Bruce, and J. B. Goodenough, “Electrochemical extraction of lithium from LiMn2O4,” Materials Research Bulletin, vol. 19, pp. 172–177, 1984. View at Publisher · View at Google Scholar
  13. J. M. Tarascon and D. Guyomard, “Li metal-free rechargeable batteries based on Li1+xMn2O4 cathodes  (0x1)  and carbon anodes,” Journal of The Electrochemical Society, vol. 138, no. 10, pp. 2864–2868, 1991. View at Publisher · View at Google Scholar
  14. Y. Gao and J. R. Dahn, “Synthesis and characterization of Li1+xMn2−xO4 for Li-ion battery applications,” Journal of The Electrochemical Society, vol. 143, no. 1, pp. 100–114, 1996. View at Publisher · View at Google Scholar
  15. M. M. Thackeray, “A comment on the structure of thin-film LiMn2O4 electrodes,” Journal of The Electrochemical Society, vol. 144, no. 5, pp. L100–L102, 1997.
  16. K. Amine, H. Tukamoto, H. Yasuda, and Y. Fujita, “A new three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries,” Journal of The Electrochemical Society, vol. 143, no. 5, pp. 1607–1613, 1996. View at Publisher · View at Google Scholar
  17. W. Liu, G. C. Farrington, F. Chaput, and B. Dunn, “Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process,” Journal of The Electrochemical Society, vol. 143, no. 3, pp. 879–884, 1996. View at Publisher · View at Google Scholar
  18. Q. L. Jiang, K. Du, Y. B. Cao, Z. D. Peng, G. R. Hu, and Y. X. Liu, “Synthesis and characterization of phosphate-modified LiMn2O4 cathode materials for Li-ion battery,” Chinese Chemical Letters, vol. 21, no. 11, pp. 1382–1386, 2010.
  19. O. Toprakci, H. A. K. Toprakci, L. Ji, and X. Zhang, “Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-ion batteries,” Kona Powder and Particle Journal, vol. 28, pp. 50–73, 2010. View at Scopus
  20. G. R. Hu, X. R. Deng, Z. D. Peng, et al., “Comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery,” Electrochimica Acta, vol. 53, no. 5, pp. 2567–2573, 2008. View at Publisher · View at Google Scholar
  21. D. Guan, Novel surface modifications and new nanostructured titania synthesis for high-performance lithium-ion batteries and solar cells [Ph. D. thesis], The Department of Mechanical Engineering, Louisiana State University, 2012.
  22. I. C. Jang, H. H. Lim, S. B. Lee et al., “Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance,” Journal of Alloys and Compounds, vol. 497, no. 1-2, pp. 321–324, 2010. View at Publisher · View at Google Scholar · View at Scopus