About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 745126, 5 pages
http://dx.doi.org/10.1155/2012/745126
Research Article

Raman Spectroscopy of DLC/a-Si Bilayer Film Prepared by Pulsed Filtered Cathodic Arc

1Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
2Western Digital (Thailand) Company Limited, Ayuthaya 13160, Thailand
3Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand

Received 1 August 2012; Revised 4 October 2012; Accepted 4 October 2012

Academic Editor: Sheng-Rui Jian

Copyright © 2012 C. Srisang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Robertson, “Ultrathin carbon coatings for magnetic storage technology,” Thin Solid Films, vol. 383, no. 1-2, pp. 81–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Robertson, “Diamond-Like Amorphous carbon,” Materials Science and Engineering, vol. 37, pp. 129–281, 2002.
  3. F. X. Liu and Z. L. Wang, “Thickness dependence of the structure of diamond-like carbon films by Raman spectroscopy,” Surface and Coatings Technology, vol. 203, no. 13, pp. 1829–1832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Rha, S. C. Kwon, J. R. Cho, S. Yim, and N. Saka, “Creation of ultra-low friction and wear surfaces for micro-devices using carbon films,” Wear, vol. 259, no. 1–6, pp. 765–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Kohira, V. Prabhakaran, and F. E. Talke, “Effect of air bearing design on wear of diamond-like carbon coated proximity recording sliders,” Tribology International, vol. 33, no. 5, pp. 315–321, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Gopinathan, C. Robinson, and F. Ryan, “Characterization and properties of diamond-like carbon films for magnetic recording application,” Thin Solid Films, vol. 355, pp. 401–405, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, no. 20, pp. 14095–14107, 2000. View at Scopus
  8. C. Weissmantel, K. Bewilogua, D. Dietrich et al., “Structure and properties of quasi-amorphous films prepared by ion beam techniques,” Thin Solid Films, vol. 72, no. 1, pp. 19–31, 1980. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Savvides, “Optical constants and associated functions of metastable diamondlike amorphous carbon films in the energy range 0.5–7.3 eV,” Journal of Applied Physics, vol. 59, no. 12, pp. 4133–4145, 1986. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Leu, S. Y. Chen, J. J. Chang, L. G. Chao, and W. Lin, “Diamond-like coatings prepared by the filtered cathodic arc technique for minting application,” Surface and Coatings Technology, vol. 177-178, pp. 566–572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Shim, E. J. Chi, H. K. Baik, and S. M. Lee, “Structural, optical, and field emission properties of hydrogenated amorphous carbon films grown by helical resonator plasma enhanced chemical vapor deposition,” Japanese Journal of Applied Physics, vol. 37, no. 2, pp. 440–444, 1998. View at Scopus
  12. H. J. Scheibe, D. Drescher, B. Schultrich, M. Falz, G. Leonhardt, and R. Wilberg, “The laser-arc: a new industrial technology for effective deposition of hard amorphous carbon films,” Surface and Coatings Technology, vol. 85, no. 3, pp. 209–214, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Grill, “Diamond-like carbon: state of the art,” Diamond and Related Materials, vol. 8, no. 2–5, pp. 428–434, 1999. View at Scopus
  14. M. V. Gradowski, A. C. Ferrari, R. Ohr et al., “Resonant Raman characterisation of ultra-thin nano-protective carbon layers for magnetic storage devices,” Surface and Coatings Technology, vol. 174-175, pp. 246–252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. F. X. Liu, K. L. Yao, and Z. L. Liu, “Substrate bias effect on structure of tetrahedral amorphous carbon films by Raman spectroscopy,” Diamond and Related Materials, vol. 16, no. 9, pp. 1746–1751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Fallon, V. S. Veerasamy, C. A. Davis et al., “Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy,” Physical Review B, vol. 48, no. 7, pp. 4777–4782, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. F. X. Liu, K. L. Yao, and Z. L. Liu, “Different substrate materials effect on structure of ta-C films by Raman spectroscopy for magnetic recording sliders,” Journal of Non-Crystalline Solids, vol. 353, no. 26, pp. 2545–2549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. W. R. Gilkes, S. Prawer, K. W. Nugent et al., “Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy,” Journal of Applied Physics, vol. 87, no. 10, pp. 7283–7289, 2000. View at Scopus
  19. A. Grill, B. S. Meyerson, V. V. Patel, J. A. Reimer, and M. A. Petrich, “Inhomogeneous carbon bonding in hydrogenated amorphous carbon films,” Journal of Applied Physics, vol. 61, no. 8, pp. 2874–2877, 1987. View at Publisher · View at Google Scholar · View at Scopus