About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 753429, 9 pages
http://dx.doi.org/10.1155/2012/753429
Research Article

Efficient Visible Light Photocatalytic Oxidation of NO on F- and N-Codoped Spherical Synthesized via Ultrasonic Spray Pyrolysis

1Environmental and Life Sciences Department, Putian University, Putian 351100, China
2Nano and Advanced Materials Institute Limited, The Hong Kong University of Science and Technology, Hong Kong
3Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong
4Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong

Received 8 June 2012; Accepted 3 October 2012

Academic Editor: Gong Ru Lin

Copyright © 2012 Jianhui Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The fluorine- and nitrogen-codoped TiO2 was synthesized by ultrasonic spray pyrolysis method with titanium tetrafluoride and urea as precursor. The codoped TiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). Nitric oxide (NO) photocatalytic oxidation in gas-phase medium was employed as a probe reaction to evaluate the photocatalytic reactivity of the catalysts. The results indicated that spherical codoped TiO2 photocatalysts with unique puckered surface were obtained by this method. The codoped catalysts have solely anatase crystalline structure. The optical characterization of the codoped catalysts showed that the codoped samples could be excited by visible light photons in the 400–550 nm and could efficiently oxidize NO under visible light irradiation. The mechanism of special morphology formation of prepared codoped TiO2 structure is also discussed.