About this Journal Submit a Manuscript Table of Contents
Journal of Nanomaterials
Volume 2012 (2012), Article ID 753429, 9 pages
http://dx.doi.org/10.1155/2012/753429
Research Article

Efficient Visible Light Photocatalytic Oxidation of NO on F- and N-Codoped Spherical Synthesized via Ultrasonic Spray Pyrolysis

1Environmental and Life Sciences Department, Putian University, Putian 351100, China
2Nano and Advanced Materials Institute Limited, The Hong Kong University of Science and Technology, Hong Kong
3Department of Civil and Structural Engineering, Research Center for Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong
4Department of Science and Environmental Studies, The Hong Kong Institute of Education, Hong Kong

Received 8 June 2012; Accepted 3 October 2012

Academic Editor: Gong Ru Lin

Copyright © 2012 Jianhui Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Heinrich, “Influence of indoor factors in dwellings on the development of childhood asthma,” International Journal of Hygiene and Environmental Health, vol. 214, no. 1, pp. 1–25, 2011. View at Publisher · View at Google Scholar
  2. C. Nguyen, C. G. Sonwane, S. K. Bhatia, and D. D. Do, “Adsorption of benzene and ethanol on MCM-41 material,” Langmuir, vol. 14, no. 17, pp. 4950–4952, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. E. N. Coker, C. Jia, and H. G. Karge, “Adsorption of benzene and benzene derivatives onto zeolite H-Y studied by microcalorimetry,” Langmuir, vol. 16, no. 3, pp. 1205–1210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Yu and G. W. M. Lee, “Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process (TiO2/UV, TiO2/UV/O3, and UV/O3),” Applied Catalysis B, vol. 75, no. 1-2, pp. 29–38, 2007. View at Publisher · View at Google Scholar
  5. M. Koch, D. R. Cohn, R. M. Patrick et al., “Electron beam atmospheric pressure cold plasma decomposition of carbon tetrachloride and trichloroethylene,” Environmental Science and Technology, vol. 29, no. 12, pp. 2946–2952, 1995. View at Scopus
  6. J. C. Yu, J. G. Yu, L. Z. Zhang, and W. K. Ho, “Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders,” Journal of Photochemistry and Photobiology A, vol. 148, no. 1–3, pp. 263–271, 2002. View at Publisher · View at Google Scholar
  7. H. F. Xu, G. Vanamu, H. Konishi, R. Yeredla, J. Phillips, and Y. F. Wang, “Photocatalytic oxidation of a volatile organic component of acetaldehyde using titanium oxide nanotubes,” Journal of Nanomaterials, vol. 2006, Article ID 78902, 8 pages, 2006.
  8. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, and Q. J. Zhang, “Preparation and photocatalytic activity of mesoporous anatase TiO2 nanofibers by a hydrothermal method,” Journal of Photochemistry and Photobiology A, vol. 182, no. 2, pp. 121–127, 2006. View at Publisher · View at Google Scholar
  9. X. F. Chen, X. C. Wang, and X. Z. Fu, “Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis,” Energy & Environmental Science, vol. 2, no. 8, pp. 872–877, 2009. View at Publisher · View at Google Scholar
  10. K. Wilke and H. D. Breuer, “The influence of transition metal doping on the physical and photocatalytic properties of titania,” Journal of Photochemistry and Photobiology A, vol. 121, no. 1, pp. 49–53, 1999. View at Publisher · View at Google Scholar
  11. J. S. Zhang, X. F. Chen, K. Takanabe et al., “Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization,” Angewandte Chemie, vol. 49, no. 2, pp. 441–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Irie, S. Washizuka, N. Yoshino, and K. Hashimoto, “Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films,” Chemical Communications, vol. 9, no. 11, pp. 1298–1299, 2003. View at Scopus
  13. S. Horikoshi, Y. Minatodani, H. Sakai, M. Abe, and N. Serpone, “Characteristics of microwaves on second generation nitrogen-doped TiO2 nanoparticles and their effect on photoassisted processes,” Journal of Photochemistry and Photobiology A, vol. 217, no. 1, pp. 191–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Guo, L. Q. Wu, Z. Chen, G. Boschloo, A. Hagfeldt, and T. L. Ma, “Highly efficient dye-sensitized solar cells based on nitrogen-doped titania with excellent stability,” Journal of Photochemistry and Photobiology A, vol. 219, no. 2-3, pp. 180–187, 2011. View at Publisher · View at Google Scholar
  15. J. G. Yu, J. C. Yu, B. Cheng, S. K. Hark, and K. Iu, “The effect of Fdoping and temperature on the structural and textural evolution of mesoporous TiO2 powders,” Journal of Solid State Chemistry, vol. 174, no. 2, pp. 372–380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. S. Jang, H. G. Kim, S. M. Ji et al., “Formation of crystalline TiO2-xNx and its photocatalytic activity,” Journal of Solid State Chemistry, vol. 179, no. 4, pp. 1067–1075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Xie, X. Zhao, Y. Chen, Q. Zhao, and Q. Yuan, “Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity,” Journal of Solid State Chemistry, vol. 180, no. 12, pp. 3576–3582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. C. Yu, W. K. Ho, J. G. Yu, H. Y. Yip, P. K. Wong, and J. C. Zhao, “Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania,” Environmental Science & Technology, vol. 39, no. 4, pp. 1175–1179, 2005. View at Publisher · View at Google Scholar
  19. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Irie, Y. Watanabe, and K. Hashimoto, “Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders,” Journal of Physical Chemistry B, vol. 107, no. 23, pp. 5483–5486, 2003. View at Scopus
  21. Q. C. Xu, D. V. Wellia, S. Yan, D. W. Liao, T. M. Lim, and T. T. Y. Tan, “Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach,” Journal of Hazardous Materials, vol. 188, no. 1V3, pp. 172–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. J. A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz et al., “Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios,” Journal of Physical Chemistry C, vol. 114, no. 6, pp. 2717–2723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. J. Tian, L. H. Hu, W. X. Li, J. Sheng, S. Xu, and S. Dai, “A facile synthesis of anatase N,B codoped TiO2 anodes for improved-performance dye-sensitized solar cells,” Journal of Materials Chemistry, vol. 21, no. 20, pp. 7074–7077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Long and N. J. English, “First-principles calculation of synergistic (N, P)-codoping effects on the visible-light photocatalytic activity of anatase TiO2,” Journal of Physical Chemistry C, vol. 114, no. 27, pp. 11984–11990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Ho, J. C. Yu, and S. C. Lee, “Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity,” Chemical Communications, no. 10, pp. 1115–1117, 2006. View at Publisher · View at Google Scholar
  26. Y. L. Su, X. W. Zhang, M. H. Zhou, S. Han, and L. C. Lei, “Preparation of high efficient photoelectrode of N-F-codoped TiO2 nanotubes,” Journal of Photochemistry and Photobiology A, vol. 194, no. 2-3, pp. 152–160, 2008. View at Publisher · View at Google Scholar
  27. D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi, and H. Haneda, “Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations,” Journal of Solid State Chemistry, vol. 178, no. 11, pp. 3293–3302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Livraghi, K. Elghniji, A. M. Czoska, M. C. Paganini, E. Giamello, and M. Ksibi, “Nitrogen-doped and nitrogen-fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photocatalytic activity under visible light,” Journal of Photochemistry and Photobiology A, vol. 205, no. 2-3, pp. 93–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. G. Huang, S. J. Liao, J. M. Liu, Z. Dang, and L. Petrik, “Preparation of visible-light responsive N-F-codoped TiO2 photocatalyst by a sol-gel-solvothermal method,” Journal of Photochemistry and Photobiology A, vol. 184, no. 3, pp. 282–288, 2006. View at Publisher · View at Google Scholar
  30. J. Xu, B. Yang, M. Wu, Z. Fu, Y. Lv, and Y. Zhao, “Novel N-F-codoped TiO2 inverse opal with a hierarchical meso-/macroporous structure: synthesis, characterization, and photocatalysis,” Journal of Physical Chemistry C, vol. 114, no. 36, pp. 15251–15259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. W. Hu, J. Zhu, L. Wu et al., “Effect of fluorination on photocatalytic degradation of rhodamine B over in(OH)ySz: promotion or Suppression?” The Journal of Physical Chemistry C, vol. 115, no. 2, pp. 460–467, 2011. View at Publisher · View at Google Scholar
  32. J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang, and L. Z. Zhang, “Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders,” Chemistry of Materials, vol. 14, no. 9, pp. 3808–3816, 2002. View at Publisher · View at Google Scholar
  33. A. Vijayabalan, K. Selvam, R. Velmurugan, and M. Swaminathan, “Photocatalytic activity of surface fluorinated TiO2-P25 in the degradation of Reactive Orange 4,” Journal of Hazardous Materials, vol. 172, no. 2-3, pp. 914–921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Q. Wang, C. Chen, W. Ma, H. Zhu, and J. Zhao, “Pivotal role of fluorine in tuning band structure and visible-light photocatalytic activity of nitrogen-doped TiO2,” Chemistry, vol. 15, no. 19, pp. 4765–4769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. W. Koebrugge, L. Winnubst, and A. J. Burggraaf, “Thermal stability of nanostructured titania and titania-ceria ceramic powders prepared by the sol-gel process,” Journal of Materials Chemistry, vol. 3, no. 11, pp. 1095–1100, 1993. View at Scopus
  36. S. J. Kim, S. D. Park, Y. H. Jeong, and S. Park, “Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution,” Journal of the American Ceramic Society, vol. 82, no. 4, pp. 927–932, 1999. View at Scopus
  37. H. B. Yin, Y. Wada, T. Kitamura et al., “Hydrothermal synthesis of nanosized anatase and ruffle TiO2 using amorphous phase TiO2,” Journal of Materials Chemistry, vol. 11, no. 6, pp. 1694–1703, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. E. Skrabalak and K. S. Suslick, “Carbon powders prepared by ultrasonic spray pyrolysis of substituted alkali benzoates,” Journal of Physical Chemistry C, vol. 111, no. 48, pp. 17807–17811, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. D. Kim, K. Y. Choi, and J. W. Yang, “Formation of spherical hollow silica particles from sodium silicate solution by ultrasonic spray pyrolysis method,” Colloids and Surfaces A, vol. 254, no. 1–3, pp. 193–198, 2005. View at Publisher · View at Google Scholar
  40. Z. Ai, L. Zhang, and S. Lee, “Efficient visible light photocatalytic oxidation of NO on aerosol flow-synthesized nanocrystalline InVO4 hollow microspheres,” Journal of Physical Chemistry C, vol. 114, no. 43, pp. 18594–18600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Huang, Z. Ai, W. Ho, M. Chen, and S. Lee, “Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO,” The Journal of Physical Chemistry A, vol. 114, no. 14, pp. 6342–6349, 2010. View at Publisher · View at Google Scholar
  42. X. Z. Li and F. B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment,” Environmental Science & Technology, vol. 35, no. 11, pp. 2381–2387, 2001. View at Publisher · View at Google Scholar
  43. M. Zhou, J. Yu, and H. Yu, “Effects of urea on the microstructure and photocatalytic activity of bimodal mesoporous titania microspheres,” Journal of Molecular Catalysis A, vol. 313, no. 1-2, pp. 107–113, 2009. View at Publisher · View at Google Scholar
  44. J. Zhang, A. Elsanousi, J. Lin et al., “Aerosol-assisted self-assembly of aluminum borate (Al18B4O33) nanowires into three dimensional hollow spherical architectures,” Crystal Growth and Design, vol. 7, no. 12, pp. 2764–2767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. G. Kontos, M. Pelaez, V. Likodimos, N. Vaenas, D. D. Dionysiou, and P. Falaras, “Visible light induced wetting of nanostructured N-F co-doped titania films,” Photochemical & Photobiological Sciences, vol. 10, no. 3, pp. 350–354, 2011. View at Publisher · View at Google Scholar
  46. I. N. Martyanov, S. Uma, S. Rodrigues, and K. J. Klabunde, “Structural defects cause TiO2-based photocatalysts to be active in visible light,” Chemical Communications, vol. 10, no. 21, pp. 2476–2477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. T. L. Ma, M. Akiyama, E. Abe, and I. Imai, “High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode,” Nano Letters, vol. 5, no. 12, pp. 2543–2547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, and J. T. Yates, “Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light,” Journal of Physical Chemistry B, vol. 108, no. 19, pp. 6004–6008, 2004. View at Scopus
  49. J. Fang, F. Shi, J. Bu et al., “One-step synthesis of bifunctional TiO2 catalysts and their photocatalytic activity,” Journal of Physical Chemistry C, vol. 114, no. 17, pp. 7940–7948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. L. Gole, J. D. Stout, C. Burda, Y. Lou, and X. Chen, “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale,” Journal of Physical Chemistry B, vol. 108, no. 4, pp. 1230–1240, 2004. View at Scopus
  51. S. Sakthivel and H. Kisch, “Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide,” ChemPhysChem, vol. 4, no. 5, pp. 487–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. J. A. Rodriguez, T. Jirsak, G. Liu, J. Hrbek, J. Dvorak, and A. Maiti, “Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2O vacancy interactions,” Journal of the American Chemical Society, vol. 123, no. 39, pp. 9597–9605, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants,” Materials Science and Engineering B, vol. 117, no. 1, pp. 67–75, 2005. View at Publisher · View at Google Scholar
  54. D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification,” Chemistry of Materials, vol. 17, no. 10, pp. 2596–2602, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Zhu, J. Yang, Z. F. Bian, et al., “Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol-gel reaction of TiCl4 and benzyl alcohol,” Applied Catalysis B, vol. 76, no. 1-2, pp. 82–91, 2007. View at Publisher · View at Google Scholar